
Machine Learning Systems Design
Introduction to ML System Design
Lecture 1: Understanding ML Systems

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. Why ML Projects Fail!
2. ML in Research vs Production
3. ML Systems vs Traditional Software
4. About Course and Grading

2

1. Why ML Projects Fail!

3

ML is in almost every aspect of our lives

4

Face
unlocking

Recommendation

Search

Photo
editing

AI
assistant

Fraud
detection

ETA

Smart
compose Smart

security
cameras

Self driving
cars

Machine
Translation

Enterprise use cases

5

AI value creation by 2030

13 trillion USD

Most of it will be outside the
consumer internet industry

6

How many ML projects fail?

7

About ….. percent of ML models never make it into production.

How many ML projects fail?

8

About 85 percent of ML models never make it into production!

Hidden technical debt in ML systems

9
Sculley, David, et al. "Hidden technical debt in machine learning systems." NeurIPS. 2012

1. Collect data
2. Train model
3. Deploy model
4.

10

ML in production: expectation

1. Choose a metric to optimize
2. Collect data
3. Train model
4. Realize many labels are wrong -> relabel data
5. Train model
6. Model performs poorly on one class -> collect more data for that class
7. Train model
8. Model performs poorly on most recent data -> collect more recent data
9. Train model

10. Deploy model
11. Dream about $$$
12. Wake up at 2am to complaints that model biases against one group -> revert to older version
13. Get more data, train more, do more testing
14. Deploy model
15. Pray
16. Model performs well but revenue decreasing
17. Cry
18. Choose a different metric
19. Start over 11

ML in production: reality

Why ML systems design?

12

● ML algorithms is the less problematic part.
● The hard part is to how to make algorithms work with other parts to solve

real-world problems.

Why ML systems design?

13

● ML algorithms is the less problematic part.
● The hard part is to how to make algorithms work with other parts to solve

real-world problems.
● 60/96 failures caused by non-ML components

https://www.youtube.com/watch?v=hBMHohkRgAA

14

Infrastructure

Interface

Data ML algorithms

System

Hardware

ML Systems
Design

Most ML
courses/books

What’s ML systems design?

The process of defining the interface, algorithms, data, infrastructure, and
hardware for a machine learning system to satisfy specified requirements.

15

What’s ML systems design?

The process of defining the interface, algorithms, data, infrastructure, and
hardware for a machine learning system to satisfy specified requirements.

16

reliable, scalable, maintainable, adaptable

Why ML projects fail?

● Lack of experienced talent
● Lack of support by the leadership
● Missing data infrastructure
● Data labeling challenges
● Siloed organizations and lack of collaboration
● Technically infeasible projects
● Lack of alignment between technical and business teams

17

2. ML in Research vs in Production

18

19

Research Production

Objectives Model performance* Different stakeholders have
different objectives

“*” It’s actively being worked. See Utility is in the Eye of the User: A Critique of NLP Leaderboards (Ethayarajh and Jurafsky, EMNLP 2020)

Objectives

https://arxiv.org/abs/2009.13888

20

ML team
highest accuracy

Objectives

21

ML team
highest accuracy

Sales
sells more ads

Objectives

22

Objectives

Product
fastest inference

ML team
highest accuracy

Sales
sells more ads

23

Manager
maximizes profit
= laying off ML teams

Objectives

Product
fastest inference

ML team
highest accuracy

Sales
sells more ads

24

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Computational priority

generating predictions

Computational priority

25

● 100ms delay can hurt conversion rates by 7% (Akamai study ‘17)
● 30% increase in latency costs 0.5% conversion rate (Booking.com ‘19)
● 53% phone users will leave a page that takes >3s to load (Google ‘16)

https://www.prnewswire.com/news-releases/akamai-online-retail-performance-report-milliseconds-are-critical-300441498.html
https://booking.ai/150-successful-machine-learning-models-6-lessons-learned-at-booking-com-681e09107bec
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/

26

● Latency: time to move a leaf
● Throughput: how many leaves in 1 sec

27

● Real-time: low latency, high throughput
● Batched: high latency, high throughput

28

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static, clean, ready Constantly shifting, messy, not
ready,
privacy, biased, unbalanced, and …

Data

29

30

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static, clean, ready Constantly shifting, messy, not
ready,
privacy, biased, unbalanced, and …

Fairness Good to have (sadly) Important

Fairness

31

Fairness

32

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

Interpretability

33

Interpretability

34

Research Production

Objectives Model performance Different stakeholders have different
objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

ML in Research vs Production

3. ML Systems vs Traditional Softwares

35

ML Systems vs Traditional Softwares

36

ML Systems vs Traditional Softwares

● Traditional program: define logic/algo to compute output

● Machine learning: Learn mode/logic from data

37

ML Systems vs Traditional Softwares

● Traditional program are deterministic
● Machine learning programs are probabilistic

38
See software 2 article

https://karpathy.medium.com/software-2-0-a64152b37c35

Traditional Software

● Code and data are separate (inputs into the system shouldn’t change the
underlying code)

39

ML Systems

● Code and data are tightly coupled
○ ML systems are part code, part data

● Not only test and version code, need to test and version data too

40

the hard part

ML Systems: version data

● Line-by-line diffs like Git doesn’t work with datasets
● Can’t naively create multiple copies of large datasets
● How to merge changes?

41

How to

● Validate data correctness?
● Test features’ usefulness?
● Detect when the underlying data distribution has changed?
● Know if the changes are bad for models without ground truth labels?
● Detect malicious data?

○ Not all data points are equal (e.g. scans of cancerous lungs are more valuable)
○ Bad data might harm your model and/or make it susceptible to attacks

42

ML Systems: data poisoning attacks

43
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning (Chen et al., 2017)

https://arxiv.org/abs/1712.05526

44

Engineering challenges with large ML models

● Too big to fit on-device
● Too much cost to train (10m $)
● Consume too much energy to work on-device
● Too slow to be useful

○ Autocompletion is useless if it takes longer to make a prediction than to type

● If unit/CI tests take hours, the development cycles will stagnate

45

More differences

46

● Testing: In traditional software design, testing is typically done by comparing the
output of the software to a predefined set of expected results. In ML, testing is
more complex because the model's output is probabilistic and can change over
time as the model is updated with new data.

The ML test score: A rubric for ML production readiness and technical debt reduction (Breck, Eric, et al., 2017)

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf

More differences

● Debugging: Debugging traditional software is often done by tracing the flow of
the code and identifying errors. In ML, debugging is more difficult because the
model's behavior is based on patterns learned from data and can be hard to
predict.

● Performance: The performance of traditional software is often measured by its
ability to complete a task within a certain amount of time or memory. In ML,
performance is measured by the accuracy of the model's predictions or decisions.

47

More differences

● Explainability: Traditional software can be easily understood by looking at the
code and the logic behind it. ML models, on the other hand, can be complex and
hard to interpret, making it difficult to understand how they arrived at a particular
decision.

● Deployment: Traditional software can be deployed on a wide range of platforms
and environments, whereas ML models require specific infrastructure and
resources to be deployed.

● Resources: ML models also require more time and resources for maintenance and
optimization.

● Data dependency: ML models heavily rely on data to learn and make predictions,
while traditional software doesn't have this dependency.

48

More differences

● Uncertainty: The outputs of traditional software are usually deterministic,
meaning that if the same input is given, the same output will be produced. ML
models, on the other hand, can produce uncertain results, due to the probabilistic
nature of the learning process.

● Continual improvement: Traditional software is often designed to be complete
and final, whereas ML models are designed to continuously improve as new data
becomes available.

● Flexibility: Traditional software is often designed to perform a specific task and
may require significant changes to adapt to new requirements. ML models, on the
other hand, can be more flexible and can adapt to new situations by learning from
new data.

49

Summary

50

Data ML Model Code

Versioning 1) Data preparation pipelines
2) Features store
3) Datasets
4) Metadata

1) ML model training pipeline
2) ML model (object)
3) Hyperparameters
4) Experiment tracking

1) Application code
2) Configurations

Testing 1) Data Validation (error
detection)
2) Feature creation unit testing

1) Model specification is unit tested
2) ML model training pipeline is integration tested
3) ML model is validated before being
operationalized
4) ML model staleness test (in production)
5) Testing ML model relevance and correctness
6) Testing non-functional requirements (security,
fairness, interpretability)

1) Unit testing
2) Integration testing for the
end-to-end pipeline

Summary

51

Data ML Model Code

Automation 1) Data transformation
2) Feature creation and
manipulation

1) Data engineering pipeline
2) ML model training pipeline
3) Hyperparameter/Parameter selection

1) ML model deployment with
CI/CD
2) Application build

Reproducibilit
y

1) Backup data
2) Data versioning
3) Extract metadata
4) Versioning of feature
engineering

1) Hyperparameter tuning is identical between dev
and prod
2) The order of features is the same
3) Ensemble learning: the combination of ML models
is same
4)The model pseudo-code is documented

1) Versions of all dependencies in
dev and prod are identical
2) Same technical stack for dev and
production environments
3) Reproducing results by
providing container images or
virtual machines

Summary

52

Data ML Model Code

Deployment 1) Feature store is used in dev
and prod environments

1) Containerization of the ML stack
2) REST API
3) On-premise, cloud, or edge

1) On-premise, cloud, or edge

Monitoring 1) Data distribution changes
(training vs. serving data)
2) Training vs serving features

1) ML model decay
2) Numerical stability
3) Computational performance of the ML model

1) Predictive quality of the
application on serving data

Summary

53

Data ML Model Code

Documentation 1) Data sources
2) Decisions, how/where to get
data
3) Labelling methods

1) Model selection criteria
2) Design of experiments
3) Model pseudo-code

1) Deployment process
2) How to run locally

Project
structure

1) Data folder for raw and
processed data
2) A folder for data engineering
pipeline
3) Test folder for data
engineering methods

1) A folder that contains the trained model
2) A folder for notebooks
3) A folder for feature engineering
4) A folder for ML model engineering

1) A folder for bash/shell scripts
2) A folder for tests
3) A folder for deployment files
(e.g Docker files)

MLOps principles

https://ml-ops.org/content/mlops-principles

Summary

● ML systems are actually softwares with much more challenges than
classical softwares in all aspects

54

4. About Course and Grading

55

This course is about

● You’ve trained a model, now what?
● What are different components of an ML system?
● How to do data engineering?
● How to engineer features?
● How to evaluate your models, both offline and online?
● What’s the difference between online prediction and batch prediction?
● How to serve a model on the cloud? On the edge?
● How to continually monitor and deploy changes to ML systems?

56

This course is not about

● Machine learning/deep learning algorithms
○ Machine Learning
○ Deep Learning
○ Convolutional Neural Networks for Visual Recognition
○ Natural Language Processing with Deep Learning

● Computer systems
○ Principles of Computer Systems
○ Operating systems design and implementation

● UX design
○ Introduction to Human-Computer Interaction Design
○ Designing Machine Learning: A Multidisciplinary Approach

57

⚠⚠ Work in progress ⚠⚠
● First time the course is offered
● The subject is new, we don’t have all the answers

○ We are all learning too!

● We appreciate your:
○ enthusiasm for trying out new things
○ patience bearing with things that don’t quite work
○ feedback to improve the course

58
Most of the content of this course (including slides) is taken from Stanford CS 329S

https://stanford-cs329s.github.io

Prerequisites

● Knowledge of CE principles and skills
● Understanding of ML algorithms
● Familiar with at least one framework such as TensorFlow, PyTorch, sklearn
● Familiarity with basic probability theory

59

Course overview

● Introduction to ML System Design (2 weeks)
● Data Lifecycle (4 weeks)
● Modeling Pipeline (5 weeks)
● Deployment and Monitoring (4 weeks)

60
Check full syllabus in SharifMLSD

https://sharifmlsd.github.io

Grading policy

61

● Quiz (10%)
● Assignments (15%)
● Final Exam (20%)
● Final project (60%)

Sum is 105%

Final project

62

● Build an ML-powered application
● Must work in groups of three
● Demo + report (creative formats encouraged)
● Evaluated by course staff and industry experts

Course staff

63

Head TA:

Hossein Basafa

Aryan Ahadinia

Narges Javid

DeploymentModelingDataScoping

Hossein Jafarinia

Omid Ghahroodi

Ali Amirinejad

Getting to know each other

1. What year/major are you?
2. What do you expect from this course?
3. What are you most scared of in this class?
4. Academia or industry career path?

64

Machine Learning Systems Design
Introduction to ML System Design
Next Lecture: Scoping the ML System Design Problem

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

