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1. When to Use ML?
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Clearly define the problem
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● Outline use cases
● Understand the assumptions



To be or not to be: “ML”
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● GMR#1: Don’t be afraid to launch a product without machine learning
● GMR#3: Choose machine learning over a complex heuristic

GMR = Google ML Rules

https://developers.google.com/machine-learning/guides/rules-of-ml


When to use ML?
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● The problem is too complex for coding (lots of rules)
● The problem is constantly changing (rules change)
● It is a perceptive problem (hard to find rules)
● It is an unstudied phenomenon (no clues for any rule)
● The problem has a simple objective (yes/no decisions)



When not to use ML?
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● Every action of the system must be explainable
● The cost of an error made by the system is too high (healthcare)
● You can solve the problem using a heuristic at a lower cost
● Getting the right data is too hard or impossible
● The phenomenon is unpredictable (stock prices?!)



Determine the priority of ML problem
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● Impact of ML
○ business impact
○ benefit in getting inexpensive (but probably imperfect) predictions
○ replace a complex (rules based) part in your engineering project 

● Cost of ML
○ the difficulty of the problem
○ the cost of data, and infra
○ the need for accuracy



Determine the priority of ML problem
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● Estimate of complexity
○ comparison with other projects (speech recognition)
○ simplifying the problem (chatbot)

● Estimate of return on investment (ROI)



2. Business and ML Objectives
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The importance of KPIs
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● GMR#2: First, design and implement metrics



Project objectives

● ML objectives
○ Performance
○ Latency
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Business objectives

How can this ML project increase profits directly or indirectly?

● Directly: increasing sales (ads, conversion rates), cutting costs
● Indirectly: increasing customer satisfaction, increasing time spent on a 

website
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ML <-> Business: can be tricky

ML model gives customers more personalized solutions
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customers happier

customers spending
more money

customers’ problems 
solved faster

customers spending
less money



● There are many cases without any clear mapping from business to ML KPIs
○ RecSys, Ads, search
○ Customer satisfaction
○ Segmentation

17

ML <-> Business: mapping



● Baselines
○ Existing solutions, simple solutions, human experts, competitors solutions, etc.

● Usefulness threshold
○ Self-driving needs human-level performance. Predictive texting doesn’t.

● False negatives vs. false positives
○ Covid screening: no false negative (patients with covid shouldn’t be classified as no covid)
○ Fingerprint unlocking: no false positive (unauthorized people shouldn’t be given access)

● Interpretability
○ Does it need to be interpretable? If yes, to whom?

● Confidence measurement (how confident it is about a prediction)
○ Does it need confidence measurement?
○ Is there a confidence threshold? What to do with predictions below that threshold—discard 

it, loop in humans, or ask for more information from users?
18

ML <-> Business: mapping



Decoupling objectives

Possible high-level goals when building a ranking system for newsfeed?

1. minimize the spread of misinformation
2. maximize revenue from sponsored content
3. maximize engagement
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Side note: ethics of maximizing engagement

20Facebook Employee Raises Powered by ‘Really Dangerous’ Algorithm That Favors Angry Posts (SFist, 2019)
The Making of a YouTube Radical (NYT, 2019)

https://sfist.com/2020/09/24/facebook-employee-raises-powered-by-really-dangerous-algorithm-that-favors-angry-posts/
https://www.nytimes.com/interactive/2019/06/08/technology/youtube-radical.html


Goal: maximize engagement
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Step-by-step objectives:

1. Filter out spam
2. Filter out NSFW content
3. Rank posts by engagement: how likely users will click on them



Wholesome newsfeed
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Goal: maximize users’ engagement while minimizing the spread of extreme views 
and misinformation

Step-by-step objectives:

1. Filter out spam
2. Filter out NSFW content
3. Filter out misinformation
4. Rank posts by quality
5. Rank posts by engagement: how likely users will click on them



Decoupling objectives
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Goal: maximize users’ engagement while minimizing the spread of extreme views 
and misinformation

Step-by-step objectives:

1. Filter out spam
2. Filter out NSFW content
3. Filter out misinformation
4. Rank posts by quality
5. Rank posts by engagement: how likely users will click on it

How to rank posts by both 
quality & engagement?



Multiple objective optimization (MOO)

24

● Rank posts by quality
○ Predict posts’ quality
○ Minimize quality_loss: difference between predicted quality and true quality

● Rank posts by how likely users will click on it
○ Predict posts’ engagement
○ Minimize engagement_loss: difference between predicted clicks and true clicks



One model optimizing combined loss
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● Rank posts by quality
○ Predict posts’ quality
○ Minimize quality_loss: difference between predicted quality and true quality

● Rank posts by how likely users will click on it
○ Predict posts’ engagement
○ Minimize engagement_loss: difference between predicted clicks and true clicks

loss = 𝛼 quality_loss + 𝛽 engagement_loss

Train one model to minimize this combined loss
Tune 𝛼 and 𝛽 to meet your need

Side note 1: check out Pareto optimization if you 
want to learn about how to choose 𝛼 and 𝛽



One model optimizing combined loss
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● Rank posts by quality
○ Predict posts’ quality
○ Minimize quality_loss: difference between predicted quality and true quality

● Rank posts by how likely users will click on it
○ Predict posts’ engagement
○ Minimize engagement_loss: difference between predicted clicks and true clicks

loss = 𝛼 quality_loss + 𝛽 engagement_loss

Train one model to minimize this combined loss

Side note 2: this is quite common, e.g. style transfer

A Neural Algorithm of Artistic Style (Gatys et al, 2017)

https://arxiv.org/pdf/1508.06576.pdf


One model optimizing combined loss
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● Rank posts by quality
○ Predict posts’ quality
○ Minimize quality_loss: difference between predicted quality and true quality

● Rank posts by how likely users will click on it
○ Predict posts’ engagement
○ Minimize engagement_loss: difference between predicted clicks and true clicks

loss = 𝛼 quality_loss + 𝛽 engagement_loss

Train one model to minimize this combined loss

⚠ Every time you want to tweak 𝛼 
and 𝛽, you have to retrain your model! 

⚠



Multiple models: each optimizing one objective
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● Rank posts by quality
○ Predict posts’ quality
○ Minimize quality_loss: difference between predicted quality and true quality

● Rank posts by how likely users will click on it
○ Predict posts’ engagement
○ Minimize engagement_loss: difference between predicted clicks and true clicks

Mq: optimizes quality_loss
Me: optimizes engagement_loss

Rank posts by 𝛼 Mq(post) + 𝛽 Me(post)

Now you can tweak 𝛼 and 𝛽 without retraining models



Decouple different objectives
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● Easier for training:
○ Optimizing for one objective is easier than optimizing for multiple objectives

● Easier to tweak your system:
○ E.g. 𝛼 % model optimized for quality + 𝛽 % model optimized for engagement

● Easier for maintenance:
○ Different objectives might need different maintenance schedules

■ Spamming techniques evolve much faster than the way post quality is perceived
■ Spam filtering systems need updates more frequently than quality ranking systems



Establish a single evaluation metric to optimize
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● Classification
○ precision
○ recall
○ FPR
○ TPR

Precision and recall (wiki) 

https://en.wikipedia.org/wiki/Precision_and_recall


Establish a single evaluation metric to optimize
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● Classification
○ precision
○ recall
○ FPR
○ TPR
○ F1



Establish a single evaluation metric to optimize
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● Classification
○ precision
○ recall
○ FPR
○ TPR
○ micro/macro/weighted F1

Micro, Macro & Weighted Averages of F1 Score 

https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f


Establish a single evaluation metric to optimize
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● Classification
○ precision
○ recall
○ FPR
○ TPR
○ micro/macro/weighted F1
○ kappa

Classification/evaluation metrics for highly imbalanced data 

https://stats.stackexchange.com/questions/222558/classification-evaluation-metrics-for-highly-imbalanced-data


Establish a single evaluation metric to optimize
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● Consider a learning algorithm with accuracy and latency (inference time)
○ accuracy?
○ latency?



Establish a single evaluation metric to optimize
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● Consider a learning algorithm with accuracy and latency (inference time)
○ accuracy?
○ latency?
○ accuracy - 0.5*latency?



Establish a single evaluation metric to optimize
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● Consider a learning algorithm with accuracy and latency (inference time)
○ accuracy?
○ latency?
○ accuracy - 0.5*latency?
○ max accuracy in models with latency < 0.01s 



Establish a single evaluation metric to optimize

37

● Consider a learning algorithm with accuracy and latency (inference time)
○ accuracy?
○ latency?
○ accuracy - 0.5*latency?
○ max accuracy in models with latency < 0.01s 

● If you are trading off N different criteria, consider N-1 metrics as 
satisficing and optimize only in one metric



When to change or add a metric
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● ?



When to change or add a new metric
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● The metric is measuring something other than what the project needs to 
optimize

● Notice a problem? Add a metric to track it! 
● Excited about some quantitative change on the last release? Add a metric 

to track it!



3. ML System Requirements and 
Constraints
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Outline your system requirements and constraints

● Requirements: what we want to happen
● Constraints: real-world limits around what we want to happen
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ML system requirements

They vary from use case to use case, but, most systems should have these 
four characteristics:

● Reliability
● Scalability
● Maintainability
● Adaptability
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ML system requirements

● Reliability
○ continuing to work correctly, even when things go wrong (fault-tolerant)

● Scalability
○ system’s ability to cope with increased load

● Maintainability
○ operability, simplicity, and evolvability 

● Adaptability
○ adapt to shifting data distributions and business requirements
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ML system constraints

● Time
○ Rule of thumb: 20% time to get initial working system, 80% on iterative development

● Budget
○ Data, resources, talent

44



Constraints: Time/budget tradeoffs 
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● Use more (powerful) machines
● Hire more people to label data faster
● Run more experiments in parallel
● Buy existing solutions



ML system constraints

● Time
○ Rule of thumb: 20% time to get initial working system, 80% on iterative development

● Budget
○ Data, resources, talent

● Privacy
○ Data, model
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Constraints: privacy

● Annotation
○ Can data be shipped outside organizations for annotation?

● Storage
○ What kind of data are you allowed to store? How long can you store it?

● Third-party solutions
○ Can you share your data with a 3rd party (e.g. managed service)?

● Regulations
○ What regulations do you have to conform to?
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ML system constraints

● Time
○ Rule of thumb: 20% time to get initial working system, 80% on iterative development

● Budget
○ Data, resources, talent

● Privacy
○ Data, model

● Technical
○ Competitors
○ Legacy systems
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Constraints: technical

● Competitors
● Legacy systems
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4. Framing ML Problem
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Types of ML tasks
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Task type

Regression

Multilabel

Classification

Binary Multiclass

High cardinalityLow cardinality



Multiclass vs. multilabel

52

Task type

Regression

Multilabel

Classification

Binary Multiclass

0 0 0 1 0 1 0 1

A label can belong to 
only one class

A label can belong to 
multiple classes



How to handle multilabel tasks
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Multilabel problem solution

A multiclass problem

Model 1: 
Does this 
belong to 
class 1?

A set of multiple binary 
problems

0 1 0 1

Model 2: 
Does this 
belong to 
class 2?

…



Multilabel is harder than multiclass
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Multilabel problem solution

A multiclass problem

Model 1: 
Does this 
belong to 
class 1?

A set of multiple binary 
problems

Model 2: 
Does this 
belong to 
class 2?

…

1. How to create ground 
truth labels?

2. How to decide 
decision boundaries

0 1 0 1



Multilabel: decision boundaries
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Multilabel problem solution

A multiclass problem

Model 1: 
Does this 
belong to 
class 1?

A set of multiple binary 
problems

0.45 0.33 0.2 0.02

Model 2: 
Does this 
belong to 
class 2?

…

Poll:
Which classes should this 
example belong to?

1. 0
2. 0, 1
3. 0, 1, 2

0 1 2 3



A problem can be framed as different task types

Problem: predict the app users will most likely open next
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INPUT

OUTPUT

0.2

0.02

…

0.04

App 0

App 1

…

Classification

0.072 0.15 … … 0.067 0.154

User’s features Environment
time, location, etc.



A problem can be framed as different task types

Problem: predict the app users will most likely open next
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0.072 0.15 … … 0.067 0.154

User’s features Environment
time, location, etc.

INPUT

OUTPUT

0.2

0.02

…

0.04

App 0

App 1

…

Classification

⚠ Every time an app is 
added/removed, you have to 

retrain your model ⚠



Framing can make the problem easier/harder

Problem: predict the app users will most likely open next
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0.072 0.15 … … 0.067 0.154

OUTPUT

App 0

Regression

Environment
time, location, etc.

User’s features App’s features

0.03

0.072 0.15 … … 0.067 0.154 App 10.06

0.072 0.15 … … 0.067 0.154 App …0.25

INPUT 0

INPUT 1

INPUT …



Framing can make the problem easier/harder

Problem: predict the app users will most likely open next
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0.072 0.15 … … 0.067 0.154INPUT 0

OUTPUT

App 0

Regression

Environment
time, location, etc.

User’s features App’s features

0.03

0.072 0.15 … … 0.067 0.154 App 10.06

0.072 0.15 … … 0.067 0.154 App …0.25

Very common framing for 
recommendations / ads CTR

INPUT 1

INPUT …



Data requirements

● Labeled or unlabeled data
● Minimum required data
● Public or private dataset
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Baseline and HPL

● Is there any baseline, what’s its performance?
● What’s the performance of state-of-the-art?
● What’s the human performance level?
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