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Agenda
1. What is data engineering?
2. Data sources
3. Data models
4. Data storage
5. Data format
6. Data flow
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4. Data storage
and retrieval
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Data storage engines

There are two families of storage engines: 

● Log-structured
● Page-oriented (B-trees) 
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Log-structured storage engine

The world’s simplest database, implemented as two Bash functions:
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Log-structured storage engine

and it works!
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Log-structured storage engine

But, old versions of the values are not overwritten
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Time and space complexity

            db_set     db_get

time complexity              ?                                         ?

space complexity           ?                                          ?
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index



Time and space complexity

            db_set     db_get
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Index (hashmap) → O(1)



Hashmap index
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Time and space complexity

            db_set     db_get

time complexity            O(1)                                  O(N)

space complexity          O(k)                                  O(1)   
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Index (hashmap) → O(1)

Compaction → O(1)



Segmenting, compaction and merge 
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Practical implementation

Lots of detail goes into making this simple idea work in practice…

● File format
● Deleting records
● Crash recovery
● Partially written records
● Concurrency control
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SSTable and LSM-Tree

We can make a simple change to the format of our segment files: we require that 
the sequence of key-value pairs is sorted by key. We call it Sorted String Table 
(SSTable). Advantages are:

● Simple and efficient merge (mergesort)
● No need to keep an index of all the keys in memory
● We can have block compression 
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SSTable and LSM-Tree
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Practical implementation

● Constructing and maintaining SSTables
● Making an LSM-tree out of SSTables
● Performance optimizations
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Page-oriented storage engine (B-Trees)
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Looking up a key using a B-tree index

branch factor = 6



Page-oriented storage engine (B-Trees)

21
Growing a B-tree by splitting a page



Practical implementation

● Making B-trees reliable
● B-tree optimizations
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Other Indexing Structures

● Storing values within the index
● Multi-column indexes
● Full-text search and fuzzy indexes
● Keeping everything in memory
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Data Storage Engines & Processing
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Databases optimized for

Transactional 
processing

Analytical 
processing



OnLine Transaction Processing (OLTP)

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Insert when generated
○ Occasional update/delete
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OnLine Transaction Processing

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Inserted when generated
○ Occasional update/delete

● Requirements
○ Low latency
○ High availability
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OnLine Transaction Processing

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Inserted when generated
○ Occasional update/delete

● Requirements
○ Low latency
○ High availability
○ ACID not necessary

■ Atomicity: all the steps in a transaction fail or succeed as a group
● If payment fails, don’t assign a driver

■ Isolation: concurrent transactions happen as if sequential
● Don’t assign the same driver to two different requests that happen at the same time
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See ACID: 
Atomicity, 
Consistency, 
Isolation, 
Durability



OnLine Transaction Processing

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Inserted when generated
○ Occasional update/delete

● Requirements
○ Low latency
○ High availability

● Typically row-major
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INSERT INTO RideTable(RideID, Username, DriverID, City, Month, Price)
VALUES ('10', 'memelord', '3932839', 'Stanford', 'July', '20.4');Row



OnLine Analytical Processing (OLAP)

● How to get aggregated information from a large amount of data?
○ e.g. what’s the average ride price last month for riders at Stanford?

● Operations:
○ Mostly SELECT
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OnLine Analytical Processing

● Analytical queries: aggregated information from a large amount of data?
○ e.g. what’s the average ride price last month for riders at Stanford?

● Operations:
○ Mostly SELECT

● Requirements:
○ Can handle complex queries on large volumes of data
○ Okay response time (seconds, minutes, even hours)
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OnLine Analytical Processing

● Analytical queries: aggregated information from a large amount of data?
○ e.g. what’s the average ride price last month for riders at Stanford?

● Operations:
○ Mostly SELECT

● Requirements:
○ Can handle complex queries on large volumes of data
○ Okay response time (seconds, minutes, even hours)

● Typically column-major
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SELECT AVG(Price)
FROM RideTable
WHERE City = 'Stanford' AND Month = 'July';

Column



Data warehousing 
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ETL (Extract, Transform, Load)
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OLTP OLAP

Extract,
Transform,
Load

Transform: the meaty part
● cleaning, validating, transposing, deriving values, joining from multiple 

sources, deduplicating, splitting, aggregating, etc.



ETL -> ELT
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Structured -> unstructured -> structured
     want more flexibility   tools & infra standardized

ETL -> ELT -> ETL



Decoupling storage & processing

● OLTP & OLAP: how data is stored is also how it’s processed
○ Same data being stored in multiple databases
○ Each uses a different processing engine for different query types

● New paradigm: storage is decoupled from processing
○ Data can be stored in the same place
○ A processing layer on top that can be optimized for different query types
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Decoupling storage & processing
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https://hevodata.com/blog/snowflake-architecture-cloud-data-warehouse/ 

https://hevodata.com/blog/snowflake-architecture-cloud-data-warehouse/


5. Data format
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How to store your data?

Programs usually work with data

● in memory, or
● over the network

thus, we need some kind of translation between the two representations.

● storing data: encoding/serialization/marshalling
● unloading data: decoding/deserialization/unmarshalling/parsing
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How to store your data?

Data formats are
agreed upon standards

to serialize your data so that
it can be transmitted & reconstructed later
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Data formats: questions to consider

● How to store multimodal data?
○ {‘image’: [[200,155,0], [255,255,255], ...], ‘label’: ‘car’, ‘id’: 1}

● Access patterns
○ How frequently the data will be accessed?

● The hardware the data will be run on
○ Complex ML models on TPU/GPU/CPU
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Formats for Encoding Data

● Language-specific: pickle
● Language independent: JSON, XML, and binary variants
● Thrift and Protocol Buffers
● Avro
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Data formats
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Language specific

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization



Data formats
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Language 
independent

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization

The difficulty of getting different organizations to agree on anything outweighs most other concerns.



MessagePack: a binary encodings for JSON 
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81 bytes to encode by the textual JSON encoding (with whitespace removed)



MessagePack: a binary encodings for JSON 
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66 bytes long binary 
encoding with 
MessagePack



Data formats
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Apache Thrift 
(Facebook) and 
Protocol Buffers 
(Google) are binary 
encodings that are 
based on the same 
principle

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization



Protocol Buffers schema
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Protocol Buffers binary encoding
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59 bytes long binary 
encoding with 
BinaryProtocol

and 34 bytes with 
CompactProtocol



Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping 
backward and forward compatibility?
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Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping 
backward and forward compatibility?

Forward compatibility:

- You can change name of a field in the schema but cannot change a field’s tag
- You can add new fields (with new tags) to the schema
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Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping 
backward and forward compatibility?

Backward compatibility:

- Every field added after the initial deployment of the schema must be optional 
or have a default value.

- You can only remove optional fields
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Protocol Buffers schema evolution

What about data types change?
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Data formats
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As a result of Thrift 
not being a good fit 
for Hadoop’s use 
cases

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization



Data formats
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Row-major

Column-major

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization



Row-major vs. column-major
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Column 1 Column 2 Column 3

Sample 1 ... ... ...

Sample 2 ... ... ...

Sample 3 ... ... ...

Row-major:
● stored and retrieved 

row-by-row
● good for accessing samples

Column-major:
● stored and retrieved column-by-column
● good for accessing features



Row-major vs. column-major: DataFrame vs. ndarray
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NumPy ndarray: row-major by default
● can specify to be column-based

Pandas DataFrame: column-major
● accessing a row much slower than 

accessing a column and NumPy

https://github.com/chiphuyen/just-pandas-things



Text vs. binary formats
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Text files Binary files

Examples CSV, JSON Parquet

Pros Human readable Compact, schema as doc, 
forward/backward compatible

Store the number 1000000? 7 characters -> 7 bytes If stored as int32, only 4 bytes



6. Data flow
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How data flows?

The most common ways how data flows between processes:

- Via databases
- Via service calls
- Via asynchronous message passing
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Data flow through databases

In a database, the process that writes to the database encodes the data, and the 
process that reads from the database decodes it.

We should also have backward and forward compatibility.

Data outlives code: Different values written at different times
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Data flow through services: REST and RPC

The web works this way: 
clients (web browsers) make requests to web servers.
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REST

SOAP

RPC, 
Websocket, 
etc

Apps Microservices



Message-passing data flow
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One process sends a message to a named queue or topic, and the broker 
ensures that the message is delivered to one or more consumers of or 
subscribers to that queue or topic.

Messages are encoded by the sender 
and decoded by the recipient
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