
Machine Learning Systems Design
Data Lifecycle
Lecture 5: Data Engineering Fundamentals

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. What is data engineering?
2. Data sources
3. Data models
4. Data storage
5. Data format
6. Data flow

2

4. Data storage
and retrieval

3

Data storage engines

There are two families of storage engines:

● Log-structured
● Page-oriented (B-trees)

4

Log-structured storage engine

The world’s simplest database, implemented as two Bash functions:

5

Log-structured storage engine

and it works!

6

Log-structured storage engine

But, old versions of the values are not overwritten

7

Time and space complexity

 db_set db_get

time complexity ? ?

space complexity ? ?

8

Time and space complexity

 db_set db_get

time complexity O(1) O(N)

space complexity O(k) O(1)

9

Time and space complexity

 db_set db_get

time complexity O(1) O(N)

space complexity O(k) O(1)

10

Time and space complexity

 db_set db_get

time complexity O(1) O(N)

space complexity O(k) O(1)

11

index

Time and space complexity

 db_set db_get

time complexity O(1) O(N)

space complexity O(k) O(1)

12

Index (hashmap) → O(1)

Hashmap index

13

Time and space complexity

 db_set db_get

time complexity O(1) O(N)

space complexity O(k) O(1)

14

Index (hashmap) → O(1)

Compaction → O(1)

Segmenting, compaction and merge

15

Practical implementation

Lots of detail goes into making this simple idea work in practice…

● File format
● Deleting records
● Crash recovery
● Partially written records
● Concurrency control

16

SSTable and LSM-Tree

We can make a simple change to the format of our segment files: we require that
the sequence of key-value pairs is sorted by key. We call it Sorted String Table
(SSTable). Advantages are:

● Simple and efficient merge (mergesort)
● No need to keep an index of all the keys in memory
● We can have block compression

17

SSTable and LSM-Tree

18

Practical implementation

● Constructing and maintaining SSTables
● Making an LSM-tree out of SSTables
● Performance optimizations

19

Page-oriented storage engine (B-Trees)

20
Looking up a key using a B-tree index

branch factor = 6

Page-oriented storage engine (B-Trees)

21
Growing a B-tree by splitting a page

Practical implementation

● Making B-trees reliable
● B-tree optimizations

22

Other Indexing Structures

● Storing values within the index
● Multi-column indexes
● Full-text search and fuzzy indexes
● Keeping everything in memory

23

Data Storage Engines & Processing

24

Databases optimized for

Transactional
processing

Analytical
processing

OnLine Transaction Processing (OLTP)

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Insert when generated
○ Occasional update/delete

25

OnLine Transaction Processing

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Inserted when generated
○ Occasional update/delete

● Requirements
○ Low latency
○ High availability

26

OnLine Transaction Processing

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Inserted when generated
○ Occasional update/delete

● Requirements
○ Low latency
○ High availability
○ ACID not necessary

■ Atomicity: all the steps in a transaction fail or succeed as a group
● If payment fails, don’t assign a driver

■ Isolation: concurrent transactions happen as if sequential
● Don’t assign the same driver to two different requests that happen at the same time

27

See ACID:
Atomicity,
Consistency,
Isolation,
Durability

OnLine Transaction Processing

● Transactions: tweeting, ordering a Lyft, uploading a new model, etc.
● Operations:

○ Inserted when generated
○ Occasional update/delete

● Requirements
○ Low latency
○ High availability

● Typically row-major

28

INSERT INTO RideTable(RideID, Username, DriverID, City, Month, Price)
VALUES ('10', 'memelord', '3932839', 'Stanford', 'July', '20.4');Row

OnLine Analytical Processing (OLAP)

● How to get aggregated information from a large amount of data?
○ e.g. what’s the average ride price last month for riders at Stanford?

● Operations:
○ Mostly SELECT

29

OnLine Analytical Processing

● Analytical queries: aggregated information from a large amount of data?
○ e.g. what’s the average ride price last month for riders at Stanford?

● Operations:
○ Mostly SELECT

● Requirements:
○ Can handle complex queries on large volumes of data
○ Okay response time (seconds, minutes, even hours)

30

OnLine Analytical Processing

● Analytical queries: aggregated information from a large amount of data?
○ e.g. what’s the average ride price last month for riders at Stanford?

● Operations:
○ Mostly SELECT

● Requirements:
○ Can handle complex queries on large volumes of data
○ Okay response time (seconds, minutes, even hours)

● Typically column-major

31

SELECT AVG(Price)
FROM RideTable
WHERE City = 'Stanford' AND Month = 'July';

Column

Data warehousing

32

ETL (Extract, Transform, Load)

33

OLTP OLAP

Extract,
Transform,
Load

Transform: the meaty part
● cleaning, validating, transposing, deriving values, joining from multiple

sources, deduplicating, splitting, aggregating, etc.

ETL -> ELT

34

Structured -> unstructured -> structured
 want more flexibility tools & infra standardized

ETL -> ELT -> ETL

Decoupling storage & processing

● OLTP & OLAP: how data is stored is also how it’s processed
○ Same data being stored in multiple databases
○ Each uses a different processing engine for different query types

● New paradigm: storage is decoupled from processing
○ Data can be stored in the same place
○ A processing layer on top that can be optimized for different query types

35

Decoupling storage & processing

36
https://hevodata.com/blog/snowflake-architecture-cloud-data-warehouse/

https://hevodata.com/blog/snowflake-architecture-cloud-data-warehouse/

5. Data format

37

How to store your data?

Programs usually work with data

● in memory, or
● over the network

thus, we need some kind of translation between the two representations.

● storing data: encoding/serialization/marshalling
● unloading data: decoding/deserialization/unmarshalling/parsing

38

How to store your data?

Data formats are
agreed upon standards

to serialize your data so that
it can be transmitted & reconstructed later

39

Data formats: questions to consider

● How to store multimodal data?
○ {‘image’: [[200,155,0], [255,255,255], ...], ‘label’: ‘car’, ‘id’: 1}

● Access patterns
○ How frequently the data will be accessed?

● The hardware the data will be run on
○ Complex ML models on TPU/GPU/CPU

40

Formats for Encoding Data

● Language-specific: pickle
● Language independent: JSON, XML, and binary variants
● Thrift and Protocol Buffers
● Avro

41

Data formats

42

Language specific

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization

Data formats

43

Language
independent

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization

The difficulty of getting different organizations to agree on anything outweighs most other concerns.

MessagePack: a binary encodings for JSON

44

81 bytes to encode by the textual JSON encoding (with whitespace removed)

MessagePack: a binary encodings for JSON

45

66 bytes long binary
encoding with
MessagePack

Data formats

46

Apache Thrift
(Facebook) and
Protocol Buffers
(Google) are binary
encodings that are
based on the same
principle

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization

Protocol Buffers schema

47

Protocol Buffers binary encoding

48

59 bytes long binary
encoding with
BinaryProtocol

and 34 bytes with
CompactProtocol

Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping
backward and forward compatibility?

49

Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping
backward and forward compatibility?

Forward compatibility:

- You can change name of a field in the schema but cannot change a field’s tag
- You can add new fields (with new tags) to the schema

50

Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping
backward and forward compatibility?

Backward compatibility:

- Every field added after the initial deployment of the schema must be optional
or have a default value.

- You can only remove optional fields

51

Protocol Buffers schema evolution

What about data types change?

52

Data formats

53

As a result of Thrift
not being a good fit
for Hadoop’s use
cases

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization

Data formats

54

Row-major

Column-major

Format Binary/Text Human-readable Example use cases

JSON Text Yes Everywhere

CSV Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift

Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)

Pickle Binary No Python, PyTorch serialization

Row-major vs. column-major

55

Column 1 Column 2 Column 3

Sample 1

Sample 2

Sample 3

Row-major:
● stored and retrieved

row-by-row
● good for accessing samples

Column-major:
● stored and retrieved column-by-column
● good for accessing features

Row-major vs. column-major: DataFrame vs. ndarray

56

NumPy ndarray: row-major by default
● can specify to be column-based

Pandas DataFrame: column-major
● accessing a row much slower than

accessing a column and NumPy

https://github.com/chiphuyen/just-pandas-things

Text vs. binary formats

57

Text files Binary files

Examples CSV, JSON Parquet

Pros Human readable Compact, schema as doc,
forward/backward compatible

Store the number 1000000? 7 characters -> 7 bytes If stored as int32, only 4 bytes

6. Data flow

58

How data flows?

The most common ways how data flows between processes:

- Via databases
- Via service calls
- Via asynchronous message passing

59

Data flow through databases

In a database, the process that writes to the database encodes the data, and the
process that reads from the database decodes it.

We should also have backward and forward compatibility.

Data outlives code: Different values written at different times

60

Data flow through services: REST and RPC

The web works this way:
clients (web browsers) make requests to web servers.

61

REST

SOAP

RPC,
Websocket,
etc

Apps Microservices

Message-passing data flow

62

One process sends a message to a named queue or topic, and the broker
ensures that the message is delivered to one or more consumers of or
subscribers to that queue or topic.

Messages are encoded by the sender
and decoded by the recipient

Machine Learning Systems Design
Data Lifecycle
Next Lecture: Data Preparation

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

