Machine Learning Systems Design
Data Lifecycle

Lecture 5: Data Engineering Fundamentals

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda

4. Data storage
5. Data format
6. Data flow

4. Data storage
and retrieval

Data storage engines

There are two families of storage engines:

e Log-structured
e Page-oriented (B-trees)

Log-structured storage engine

The world’s simplest database, implemented as two Bash functions:

#!/bin/bash

db_set () {
echo "$1,$2" >> database

}

db_get () {
grep "”~$1," database | sed -e "s/7~$1,//" | tail -n 1
}

Log-structured storage engine

and it works!

$ db_set 123456 '{"name":"London","attractions":["Big Ben","London Eye"]}'

$ db_set 42 '{"name":"San Francisco","attractions":["Golden Gate Bridge"]}'

$ db_get 42
"name":"San Francisco","attractions":["Golden Gate Bridge"]}

Log-structured storage engine

But, old versions of the values are not overwritten

$ db_set 42 '{"name":"San Francisco","attractions":["Exploratorium"]}'

$ db_get 42
"name":"San Francisco","attractions":["Exploratorium"]}

S cat database

123456,{"name" : "London","attractions":["Big Ben","London Eye"]}
42,{"name":"San Francisco","attractions":["Golden Gate Bridge"]}

42,{"name":"San Francisco","attractions":["Exploratorium"]}

Time and space complexity

db set db get
time complexity ? ?

space complexity ? ?

Time and space complexity

db set db get
time complexity 0(1) O(N)

space complexity 0(k) o(1)

Time and space complexity

db set db get
time complexity 0(1) O(N)

space complexity 0(k) o(1)

10

Time and space complexity

db set db get
time complexity 0(1) O(N) index

space complexity 0(k) o(1)

11

Time and space complexity

db set db get
time complexity 0(1) O(N) Index (hashmap) — 0O(1)

space complexity 0(k) o(1)

12

Hashmap index

key byte offset

123456 0

z
ijolnis|" [" B i
* (
}I\n(4[2],[{|"[n]|a|m

attrlaction

dge " 11} \n

In-memory hash map

Log-structured file on disk
(each box is one byte)

n|"|,(I1"jajtlt]r]a

ondon E y e

13

Time and space complexity

db set db get
time complexity 0(1) O(N) Index (hashmap) — 0O(1)
space complexity 0(k) o(1)

Compaction — 0(1)

14

Segmenting, compaction and merge

Y.

Data file segment 1

mew:1078 | purr:2103 | purr:2104 | mew:1079 | mew:1080 | mew: 1081
purr: 2105 purr: 2106 ‘ purr: 2107 yawn: 511 purr: 2108 mew: 1082
Data file segment 2
purr: 2109 purr: 2110 ‘ mew: 1083 scratch: 252 | mew: 1084 mew: 1085
purr:2111 mew: 1086 ‘ purr: 2112 purr: 2113 mew: 1087 purr: 2114
+) Compaction and merging process
Merged segments 1 and 2
yawn: 511 scratch: 252 ‘ mew: 1087 purr: 2114

15

Practical implementation

Lots of detail goes into making this simple idea work in practice...

File format

Deleting records

Crash recovery

Partially written records
Concurrency control

16

SSTable and LSM-Tree

We can make a simple change to the format of our segment files: we require that
the sequence of key-value pairs is sorted by key. We call it
. Advantages are:

e Simple and efficient merge (mergesort)
e No need to keep an index of all the keys in memory
e \We can have block compression

17

SSTable and LSM-Tree

Sparse index

in memory

key byte offset

hammock 100491 ¢
handbag 102134

handsome 104667

hangout 106812

Sorted segment file (SSTable) on disk

>

......... hand: 91541

handbag: 8786 | handcuffs: 2729 | handful: 44662
handicap: 70836 | handiwork: 45521 | handkerchief: 20952

handlebars: 3869 | handoff: 5741 | handprinted: 33632

handsome: 86478 | handwaving: 44005 | handwriting: 22846

compress)ble block

.........

18

Practical implementation

e Constructing and maintaining SSTables
e Making an LSM-tree out of SSTables
e Performance optimizations

19

Page-oriented storage engine (B-Trees)

“Look up user_id =251"

________________________ » key =500
"""""""""" » 400 < key < 500

"""" » 300 < key < 400

key < 100 4~

" 100<key<200 200 < key < 300

\4
I ref ‘111' ref |135| ref |'|52’ ref ‘169| ref |190| ref I

A » » < i “A

| ref ‘210‘ ref |230| ref ‘250] ref ‘270‘ ref |290| ref I

A » » " “A

250 < key < 270

1250 val [251] val [252] val [253] val [254] val |

Looking up a key using a B-tree index

20

Page-oriented storage engine (B-Trees)

I ref]310[ref ‘333[ref]345[ref | (spare space) |

A A %
333 < key < 345 '

[333] val [335] val [337] val [340 | val [342] val |

After adding key 334:
| ref |310] ref [333] ref [337] ref |345] ref | (spare)
i 9 P
333;key<337 337 <key < 345
[333] val [334] val [335] val | (spare space) |
[337] val [340] val [342] val | (spare space)

Growing a B-tree by splitting a page
21

Practical implementation

e Making B-trees reliable
e B-tree optimizations

22

Other Indexing Structures

Storing values within the index
Multi-column indexes

Full-text search and fuzzy indexes
Keeping everything in memory

23

Data Storage Engines & Processing

Databases optimized for

N

Transactional Analytical
processing processing

24

OnLine Transaction Processing (OLTP)

e Transactions: tweeting, ordering a Lyft, uploading a new model, etc.

e Operations:

o Insert when generated
o Occasional update/delete

25

OnLine Transaction Processing

e Requirements
o Low latency
o High availability

26

OnLine Transaction Processing

e Requirements
o Low latency

See ACID:
o High availability Atomicity,
o ACID not necessary Consistency,
m Atomicity: all the steps in a transaction fail or succeed as a group Isolation,
e If payment fails, don’t assign a driver Durability

m Isolation: concurrent transactions happen as if sequential
e Don’t assign the same driver to two different requests that happen at the same time

27

OnLine Transaction Processing

e Typically row-major

INSERT INTO RideTable (RideID, Username, DriverID,

Row VALUES ('10', 'memelord', '3932839', 'Stanford',

City,
'July',

Month,

Price)

'20.4");

28

OnLine Analytical Processing (OLAP)

e How to get aggregated information from a large amount of data?
o e.g.what's the average ride price last month for riders at Stanford?

e Operations:
o Mostly SELECT

29

OnLine Analytical Processing

e Requirements:

o Can handle complex queries on large volumes of data
o Okay response time (seconds, minutes, even hours)

30

OnLine Analytical Processing

e Typically column-major

SELECT AVG (Price)
Column FROM RideTable

WHERE City = 'Stanford' AND Month = 'July';

31

Data warehousing

g Warehouse Truck

by Customer .

- worker driver
é’ Ecommerce site Stock-keeping app Vehicle route planner
]

7
a\ h 4 h 4 Y
& Sales Inventory Geo
= DB DB DB
@)

extract extract extract
g transform transform transform :
2 :
:>’\ : load load / load :
o ! !
S Business : query :
(@) S % Data warehouse |

SN
N

OLTP

Extract,
Transform,
Load

~_

Transform: the meaty part

ETL (Extract, Transform, Load)

TN
N

OLAP

~_

e cleaning, validating, transposing, deriving values, joining from multiple
sources, deduplicating, splitting, aggregating, etc.

33

ETL -> ELT

Structured -> unstructureq -> structured/

want more flexibility tools & infra Standardized

ETL -> ELT -> ETL

34

Decoupling storage & processing

e OLTP & OLAP: how data is stored is also how it's processed
o Same data being stored in multiple databases
o Each uses a different processing engine for different query types

e New paradigm: storage is decoupled from processing

o Data can be stored in the same place
o A processing layer on top that can be optimized for different query types

= === 5’0'2

XK snowflaoke teradata.

0
o/

<|||

35

Decoupling storage & processing

Cloud Services Layer

Compute Layer
or
Query Processing Layer

'?snowﬂoke

<
2‘0

Storage Layer

Authentication, Optimizer, Metadata Manager,
Security etc.

Virtual Warehouse Virtual Warehouse

https://hevodata.com/bloa/snowflake-architecture-cloud-data-warehouse/

36

https://hevodata.com/blog/snowflake-architecture-cloud-data-warehouse/

5. Data format

37

How to store your data?

Programs usually work with data

® in memory, or
e over the network

thus, we need some kind of translation between the two representations.

e storing data: encoding/serialization/marshalling
e unloading data: decoding/deserialization/unmarshalling/parsing

38

How to store your data?

Data formats are
agreed upon standards
to serialize your data so that
it can be transmitted & reconstructed later

39

Data formats: questions to consider

e How to store multimodal data?

© {‘image’: [[200,155,0], [255,255,255], ...]1, ‘label’:

e Access patterns
o How frequently the data will be accessed?
e The hardware the data will be run on
o Complex ML models on TPU/GPU/CPU

40

Formats for Encoding Data

Language-specific: pickle

Language independent: JSON, XML, and binary variants
Thrift and Protocol Buffers

Avro

41

Data formats

Language specific

Format
JSON
CSVv
Parquet
Avro
Protobuf

Pickle

Binary/Text
Text

Text

Binary

Binary primary
Binary primary

Binary

Human-readable

Yes

Yes

No

No

No

No

Example use cases
Everywhere

Everywhere

Hadoop, Amazon Redshift
Hadoop

Google, TensorFlow (TFRecord)

Python, PyTorch serialization

42

Data formats

Format

Language JSON

ind dent
independen cov

Parquet
Avro
Protobuf

Pickle

The difficulty of getting different organizations to agree on anything outweighs most other concerns.

Binary/Text
Text

Text

Binary

Binary primary
Binary primary

Binary

Human-readable

Yes

Yes

No

No

No

No

Example use cases
Everywhere

Everywhere

Hadoop, Amazon Redshift
Hadoop

Google, TensorFlow (TFRecord)

Python, PyTorch serialization

43

MessagePack: a binary encodings for JSON

{

"userName": "Martin",

"favoriteNumber": 1337,

"{nterests": ["daydreaming", "hacking"]
}

81 bytes to encode by the textual JSON encoding (with whitespace removed)

44

MessagePack: a binary encodings for JSON

Byte sequence (66 bytes):

[83]a8]75 73 65 72 4e 61 6d 65|a6[4d 61 72 74 69 6e|ac|66 61

76 6£ 72 69 74 65 de 75 6d 62 65 72|cd |05 39[a9]69 6e 74 65

72 65 73 74 73[92[ab64 61 79 64 72 65 61 6d 69 6e 67|a7|68

61 63 6b 69 6e 67|

66 bytes long binary

Breakdown: encoding with
object string string
(3entries) (length 8) u s e r N a m e (length 6) M a r t i n MessagePack
[83] [a8| |75 73 65 72 4e 61 6d 65| [a6| [4d 61 72 74 69 6e

string

(length 14) f a v o r i t e N u m b e r

ac| [66 61 76 6£ 72 69 74 65 4e 75 6d 62 65 72|

string

uint16 1337 (length 9) i n t e r e s t s

cd| [o5 39| [a9]| |69 6e 74 65 72 65 73 74 73]
array string
(2 entries) (length 11) d a y d r e a m i n g
[92] [ab| |64 61 79 64 72 65 61 6d 69 6e 67

string

(length 7) h a ¢ k i n g

a7| (68 61 63 6b 69 6e 67

Data formats

Apache Thrift
(Facebook) and
Protocol Buffers
(Google) are binary
encodings that are
based on the same
principle

Format Binary/Text Human-readable | Example use cases

JSON Text Yes Everywhere

Ccsv Text Yes Everywhere

Parquet Binary No Hadoop, Amazon Redshift
Avro Binary primary No Hadoop

Protobuf Binary primary No Google, TensorFlow (TFRecord)
Pickle Binary No Python, PyTorch serialization

46

Protocol Buffers schema

message Person {
required string user_name
optional int64 favorite_number
repeated string interests

W N =
e Vo

e

47

Protocol Buffers binary encoding

Thrift BinaryProtocol

Byte sequence (59 bytes):

|ob|00 01[00 00 00 06[4d 61 72 74 69 6e|0a|00 02[00 00 00 00

00 00 05 39|0f 00 03|{0b(00 00 00 02

00 00 00 0b[64 61 79 64

72 65 61 6d 69 6e 67(00 00 00 07(68 61 63 6b 69 6e 67|00|

Breakdown:
type 11 (string) field tag =1 length 6 M a r t i n
ob| oo o1| [0o0 00 00 06 [4d 61 72 74 69 6e|
type 10 (i64) field tag =2 1337
loa| |00 02| [00 00 00 00 00 00 05 39|
type 15 (list) field tag =3 item type 11 (string) 2 list items
log| |00 03] [ob 00 00 00 02|

length 11

d a y d r e a

m i n g

00 00 00 Ob

64 61 79 64 72 65 61 6d 69 6e 67

length 7

h a ¢ k i n g

00 00 00 07

68 61 63 6b 69 6e 67

end of struct

00

59 bytes long binary
encoding with
BinaryProtocol

and 34 bytes with
CompactProtocol

48

Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping
backward and forward compatibility?

49

Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping
backward and forward compatibility?

Forward compatibility:

- You can change name of a field in the schema but cannot change a field’s tag
- You can add new fields (with new tags) to the schema

50

Protocol Buffers schema evolution

How do Thrift and Protocol Buffers handle schema changes while keeping
backward and forward compatibility?

Backward compatibility:

- Every field added after the initial deployment of the schema must be optional
or have a default value.
- You can only remove optional fields

51

Protocol Buffers schema evolution

What about data types change?

52

Data formats

As a result of Thrift
not being a good fit
for Hadoop's use
cases

Format
JSON
CSVv
Parquet
Avro
Protobuf

Pickle

Binary/Text
Text

Text

Binary

Binary primary
Binary primary

Binary

Human-readable

Yes

Yes

No

No

No

No

Example use cases
Everywhere

Everywhere

Hadoop, Amazon Redshift
Hadoop

Google, TensorFlow (TFRecord)

Python, PyTorch serialization

53

Data formats

Row-major

Column-major

Format
JSON
CsVv
Parquet
Avro
Protobuf

Pickle

Binary/Text
Text

Text

Binary

Binary primary
Binary primary

Binary

Human-readable

Yes

Yes

No

No

No

No

Example use cases
Everywhere

Everywhere

Hadoop, Amazon Redshift
Hadoop

Google, TensorFlow (TFRecord)

Python, PyTorch serialization

54

Row-major vs. column-major

Column-major:

e stored and retrieved column-by-column
e good for accessing features

)
Column 1l Column2 Column3

Row-major: [Sample1l | .. }
e stored and retrieved
row-by-row
e good for accessing samples

Sample 2

Sample 3

Row-major vs. column-major: DataFrame vs. ndarray

Pandas DataFrame: column-major
® accessing a row much slower than
accessing a column and NumPy

NumPy ndarray: row-major by default
e can specify to be column-based

Get the column “date~, 1000 loops
$timeit -nl1000 df["Date"]

Get the first row, 1000 loops
$timeit -nl1000 df.iloc[0]

1.78 us * 167 ns per loop (mean % std. dev.
+ . of 7 runs, 1000 loops each)

145 pus t 9.41 us per loop (mean

df np = df.to_numpy()
$timeit -nl1000 df np[O0]
$timeit -nl000 df np[:,0]

147 ns

+
204 ns ¢

of 7 runs, 1000 loops each)

1.54 ns per loop (mean t std. dev. of 7 runs, 1000 loops each)
0.678 ns per loop (mean t std. dev. of 7 runs, 1000 loops each)

https://github.com/chiphuyen/just-pandas-things

56

Text vs. binary formats

Text files Binary files
Examples CSsV, JSON Parquet
Pros Human readable Compact, schema as doc,

forward/backward compatible

Store the number 10000007 7 characters -> 7 bytes If stored as int32, only 4 bytes

You can unload the result of an Amazon Redshift query to your Amazon S3 data lake in Apache

Parquet, an efficient open columnar storage format for analytics. Parquet format is up to 2x . amazon

faster to unload and consumes up to 6x less storage in Amazon S3, compared with text REDSHIFT

formats. This enables you to save data transformation and enrichment you have done in

57

6. Data flow

58

How data flows?

The most common ways how data flows between processes:

- Via databases
- Via service calls
- Via asynchronous message passing

59

Data flow through databases

In a database, the process that writes to the database encodes the data, and the
process that reads from the database decodes it.

We should also have and compatibility.

Data outlives code: Different values written at different times

60

Data flow through services: REST and RPC

The web works this way:
clients (web browsers) make requests to web servers.

Apps Microservices REST RPC

Websocket,

SOAP 4ic

61

Message-passing data flow

Messages are encoded by the sender
and decoded by the recipient

PRODUCER
’ MESSAGE QUEUE

HjEN

PRODUCER

2

One process sends a message to a named queue or topic, and the broker
ensures that the message is delivered to one or more consumers of or

subscribers to that queue or topic.

CONSUMER

62

Machine Learning Systems Design
Data Lifecycle

Next Lecture: Data Preparation

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

