
Machine Learning Systems Design
Data Lifecycle
Lecture 9: Feature Engineering (cont.)

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. Why Feature Engineering
2. Handling Missing Values
3. Feature Scaling and Transformation
4. Feature Selection
5. Feature Encoding
6. Feature Extraction

2

5. Feature Encoding

3

What is feature encoding

Feature encoding is a process of transforming categorical values of features into
numerical ones:
● label encoding
● one-hot encoding
● ordinal encoding
● binary encoding
● frequency encoding
● hashing encoding
● positional encoding

4

Label encoding

It assigns a unique numerical value to each category

5

color length price

1 brown 1.2 10

2 white 3.1 32

3 white 2 20

4 black 1 10

5 brown 1 9

color length price

1 1 1.2 10

2 0 3.1 32

3 0 2 20

4 2 1 10

5 1 1 9

What is the problem?

Label encoding

Simple and fast, but it may introduce an artificial order among the categories that
does not reflect their actual relationship.

6

One-hot encoding

Creates a new binary feature for each category.

7

color_
black

color_
brown

color_
white

length price

1 0 1 0 1.2 10

2 0 0 1 3.1 32

3 0 0 1 2 20

4 1 0 0 1 10

5 0 1 0 1 9

One-hot encoding

Avoids imposing an artificial order among the categories, but it may increase the
dimensionality of the data and cause sparsity issues.

8

Ordinal encoding

Assigns a numerical value to each category based on some inherent order.

9

size price

1 small 10

2 large 32

3 medium 20

4 small 10

5 small 9

size price

1 1 10

2 3 32

3 2 20

4 1 10

5 1 9

Ordinal encoding

Preserves the order among the categories, but it may not capture the exact
difference between them.

10

Binary encoding

Converts each category into binary digits and assigns each digit to a separate
column.

11

color1 color0 length price

1 0 1 1.2 10

2 0 0 3.1 32

3 0 0 2 20

4 1 0 1 10

5 0 1 1 9

Binary encoding

It reduces the number of columns needed compared to one-hot encoding.

But, It can lose some information or introduce some correlation between the
columns.

12

Frequency encoding

Replaces each category with its frequency of occurrence in the data.

13

city price

1 NY 10

2 London 32

3 Paris 20

4 Paris 10

5 NY 9

city price

1 0.4 10

2 0.3 32

3 0.3 20

4 0.3 10

5 0.4 9

NY: 0.4,
Paris: 0.3,

London: 0.3

Frequency encoding

Reduces the dimensionality of the data and captures the popularity of each
category, but it may lose some information about the uniqueness of each
category.

14

Hashing encoding

● Example: you want to build a recommendation system for Amazon
○ There are over 2 million brands that we need to recommend

15

Hashing encoding

● Example: you want to build a recommendation system for Amazon
○ There are over 2 million brands that we need to recommend

16

How do we encode the different
brands/vendors?

Hashing encoding

● one-hot encoding!

17

How do we encode the different
brands/vendors?

Hashing encoding

● one-hot encoding!

18

How do we handle a new brand
that wants to join Amazon?

Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”

19

How do we handle a new brand
that wants to join Amazon?

Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”

20

Problem! “UNKNOWN” was not seen during training, so none of
the products in this category are being recommended

Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”

21

Fix – encode brands as themselves, group bottom-performing
1% of brands as “UNKNOWN”

Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
● Group bottom 1% of brands and newcomers into “UNKNOWN” category

22

Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
● Group bottom 1% of brands and newcomers into “UNKNOWN” category

23

Alert! Nike wants to join Amazon as a new vendor

Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
● Group bottom 1% of brands and newcomers into “UNKNOWN” category
● Problem – this treats all newcomers the same as unpopular brands on the

platform

24

Hashing encoding

How do we implement a flexible method of handling new brands as they are
introduced to our system?

25

Hashing encoding

1. Represent each category with its attribute
a. E.g. to represent a brand, use features: yearly revenue, company size, etc..

2. Hashing trick

26

Hashing encoding

● Hashing – use a hash function to hash categories to different indexes

27

Hashing encoding

● Hashing – use a hash function to hash categories to different indexes
○ e.g. hash(“Nike”) = 0, hash(“Adidas”) = 27, etc…

28

Hashing encoding

● Hashing – use a hash function to hash categories to different indexes
○ e.g. hash(“Nike”) = 0, hash(“Adidas”) = 27, etc…

● Benefits – you can choose how large the hash space is

29

Hashing encoding

● Hashing – use a hash function to hash categories to different indexes
○ e.g. hash(“Nike”) = 0, hash(“Adidas”) = 27, etc…

● Benefits – you can choose how large the hash space is
● Drawbacks – two categories being hashed to the same index

30

Hashing encoding

31

A 50% collision rate only
causes the log loss to
increase less than 0.5%

Hashing encoding

● Choose a hash space large enough to reduce collisions
● Choose functions with properties beneficial to your use case

○ Locality-sensitive hashing

32

Hashing Trick Takeaways

● Hashing trick considered “hacky” by academics
● Widely used in industry and in machine learning frameworks
● Useful in practice for continual learning in production

33

Positional Embeddings

● Popularized in
Attention is All
You Need paper

● Similar to word
embeddings

○ Can be either
learned or fixed

34Why do we need position embeddings?

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Positional Embeddings

● Traditional architectures (RNNs, LSTMs) process tokens sequentially
● Transformers process tokens in parallel → need to communicate

sequential nature of human language to model

35

Positional Embeddings

The following criteria should be satisfied:

● It should output a unique encoding for each time-step (word’s position in a
sentence)

● Distance between any two time-steps should be consistent across sentences
with different lengths.

● Our model should generalize to longer sentences without any efforts. Its
values should be bounded.

● It must be deterministic.

36

Positional Embeddings

● Fourier features

37

Positional Embeddings

What the Sinusoidal functions

38

Positional Embeddings

What the Sinusoidal functions

39

Question

How to encode ZIP code?

40

Answer

● Hashing
● Geocoding
● Target encoding

41

Target encoding

For example, if you have a feature called city and a target variable called salary,
you can replace each city name with the average salary of all data points
belonging to that city¹. This way, you can capture some information about the
relationship between city and salary in a single number.

Target encoding can help improve the performance of machine learning models
that work better with numerical features than categorical features. However, it
can also introduce some problems such as overfitting or leakage if not done
properly.

42
target-encoding

https://www.kaggle.com/code/ryanholbrook/target-encoding

Target encoding

● It can cause overfitting or leakage if not done properly
● It can lose some information about the frequency or distribution of

categorical features

43

How to avoid overfitting?

Target encoding

 One way is to use cross-validation or nested folds, where you split your training
data into several subsets and fit the encoder on one subset and apply it on
another subset.

44

Discretization/bucketizing/binning

● Turning a continuous feature into a discrete feature (quantization)

45

Discretization

● Turning a continuous feature into a discrete feature (quantization)
● Create buckets for different ranges

○ Incorporate knowledge/expertise about each variable by constructing specific buckets

46

Discretization

● Turning a continuous feature into a discrete feature (quantization)
● Create buckets for different ranges

○ Incorporate knowledge/expertise about each variable by constructing specific buckets

● Examples
○ Income

■ Lower income: x < $35,000
■ Middle income: $35,000 < x < $100,000
■ High income: x > $100,000

47

Discretization

● Turning a continuous feature into a discrete feature (quantization)
● Create buckets for different ranges

○ Incorporate knowledge/expertise about each variable by constructing specific buckets

● Examples
○ Income

■ Lower income: x < $35,000
■ Middle income: $35,000 <= x < $100,000
■ High income: x >= $100,000

○ Age
■ Minors: x < 18
■ College: 18 <= x < 22
■ Young adult: 22 <= x < 30
■ 30 <= x < 40
■ 40 <= x < 65
■ Seniors: x >= 65

48

6. Feature Extraction

49

What

● A process of transforming the original data into a new representation that
can be more suitable for machine learning tasks (informative &
non-redundant)

● A way of reducing the dimensionality and complexity of data by selecting or
creating relevant features.

50

Why

● To improve the performance, efficiency and interpretability of machine
learning models.

● To overcome the problems of high dimensionality, such as noise, redundancy,
sparsity and curse of dimensionality.

51

PCA: Principal Component Analysis

52

LDA: Linear Discriminant Analysis

53

ICA: Independent Component Analysis

PCA: finds directions of maximal
variance in gussian data

ICA: Finds direction of maximal
independence in nonguassian data

54

LLE: Locally Linear Embedding

55

Reducing the dimensionality of data while preserving the local structure of the data

t-SNE: t-distributed Stochastic Neighbor Embedding

56
manifold learning

Constructs probabilities of
choosing points based on
similarity in high dimensions.
Then, finds a low-dimensional
representation that preserves
these probabilities.

https://scikit-learn.org/stable/modules/manifold.html

Autoencoders

57

Feature Crossing

● Combine two or more features to create a new feature

58

Marriage Single Married Single Single Married

Children 0 2 1 0 1

Marriage &
children

Single, 0 Married, 2 Single, 1 Single, 0 Married, 1

Feature Crossing

● Helps models learn non-linear relationships between variables
● Warning – feature crossing can blow up your feature space

○ e.g. Feature A and B both have 100 categories → Feature A x B will have 10,000 categories
○ Need even more data to learn this new feature space
○ Blowing up feature space can increase risk of overfitting

59

Very common in RecSys & CTR with
models like DeepFM and xDeepFM

https://www.ijcai.org/proceedings/2017/0239.pdf
https://arxiv.org/pdf/1803.05170.pdf

Machine Learning Systems Design
Data Lifecycle
Next Lecture: Model Development and Training

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

