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Agenda
1. Why Feature Engineering
2. Handling Missing Values
3. Feature Scaling and Transformation
4. Feature Selection
5. Feature Encoding
6. Feature Extraction
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5. Feature Encoding
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What is feature encoding

Feature encoding is a process of transforming categorical values of features into 
numerical ones:
● label encoding
● one-hot encoding
● ordinal encoding
● binary encoding
● frequency encoding
● hashing encoding
● positional encoding
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Label encoding

It assigns a unique numerical value to each category
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color length price

1 brown 1.2 10

2 white 3.1 32

3 white 2 20

4 black 1 10

5 brown 1 9

color length price

1 1 1.2 10

2 0 3.1 32

3 0 2 20

4 2 1 10

5 1 1 9

What is the problem?



Label encoding

Simple and fast, but it may introduce an artificial order among the categories that 
does not reflect their actual relationship.
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One-hot encoding

Creates a new binary feature for each category.
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color_
black

color_
brown

color_
white

length price

1 0 1 0 1.2 10

2 0 0 1 3.1 32

3 0 0 1 2 20

4 1 0 0 1 10

5 0 1 0 1 9



One-hot encoding

Avoids imposing an artificial order among the categories, but it may increase the 
dimensionality of the data and cause sparsity issues.
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Ordinal encoding

Assigns a numerical value to each category based on some inherent order. 
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size price

1 small 10

2 large 32

3 medium 20

4 small 10

5 small 9

size price

1 1 10

2 3 32

3 2 20

4 1 10

5 1 9



Ordinal encoding

Preserves the order among the categories, but it may not capture the exact 
difference between them.
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Binary encoding

Converts each category into binary digits and assigns each digit to a separate 
column.
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color1 color0 length price

1 0 1 1.2 10

2 0 0 3.1 32

3 0 0 2 20

4 1 0 1 10

5 0 1 1 9



Binary encoding

It reduces the number of columns needed compared to one-hot encoding.

But, It can lose some information or introduce some correlation between the 
columns.
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Frequency encoding

Replaces each category with its frequency of occurrence in the data.
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city price

1 NY 10

2 London 32

3 Paris 20

4 Paris 10

5 NY 9

city price

1 0.4 10

2 0.3 32

3 0.3 20

4 0.3 10

5 0.4 9

NY: 0.4, 
Paris: 0.3, 

London: 0.3



Frequency encoding

Reduces the dimensionality of the data and captures the popularity of each 
category, but it may lose some information about the uniqueness of each 
category.
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Hashing encoding

● Example: you want to build a recommendation system for Amazon
○ There are over 2 million brands that we need to recommend
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Hashing encoding

● Example: you want to build a recommendation system for Amazon
○ There are over 2 million brands that we need to recommend
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How do we encode the different 
brands/vendors?



Hashing encoding

● one-hot encoding!
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How do we encode the different 
brands/vendors?



Hashing encoding

● one-hot encoding!
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How do we handle a new brand 
that wants to join Amazon?



Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
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How do we handle a new brand 
that wants to join Amazon?



Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
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Problem! “UNKNOWN” was not seen during training, so none of 
the products in this category are being recommended



Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
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Fix – encode brands as themselves, group bottom-performing 
1% of brands as “UNKNOWN”



Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
● Group bottom 1% of brands and newcomers into “UNKNOWN” category
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Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
● Group bottom 1% of brands and newcomers into “UNKNOWN” category
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Alert! Nike wants to join Amazon as a new vendor



Hashing encoding

● one-hot encoding!
● encode unseen brands with “UNKNOWN”
● Group bottom 1% of brands and newcomers into “UNKNOWN” category
● Problem – this treats all newcomers the same as unpopular brands on the 

platform
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Hashing encoding

How do we implement a flexible method of handling new brands as they are 
introduced to our system?
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Hashing encoding

1. Represent each category with its attribute
a. E.g. to represent a brand, use features: yearly revenue, company size, etc..

2. Hashing trick
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Hashing encoding

● Hashing – use a hash function to hash categories to different indexes
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Hashing encoding

● Hashing – use a hash function to hash categories to different indexes
○ e.g. hash(“Nike”) = 0, hash(“Adidas”) = 27, etc…
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Hashing encoding

● Hashing – use a hash function to hash categories to different indexes
○ e.g. hash(“Nike”) = 0, hash(“Adidas”) = 27, etc…

● Benefits – you can choose how large the hash space is
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Hashing encoding

● Hashing – use a hash function to hash categories to different indexes
○ e.g. hash(“Nike”) = 0, hash(“Adidas”) = 27, etc…

● Benefits – you can choose how large the hash space is
● Drawbacks – two categories being hashed to the same index
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Hashing encoding
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A 50% collision rate only 
causes the log loss to 
increase less than 0.5%



Hashing encoding

● Choose a hash space large enough to reduce collisions
● Choose functions with properties beneficial to your use case

○ Locality-sensitive hashing
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Hashing Trick Takeaways

● Hashing trick considered “hacky” by academics
● Widely used in industry and in machine learning frameworks
● Useful in practice for continual learning in production
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Positional Embeddings

● Popularized in 
Attention is All 
You Need paper

● Similar to word 
embeddings

○ Can be either 
learned or fixed

34Why do we need position embeddings?

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Positional Embeddings

● Traditional architectures (RNNs, LSTMs) process tokens sequentially
● Transformers process tokens in parallel → need to communicate 

sequential nature of human language to model
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Positional Embeddings

The following criteria should be satisfied:

● It should output a unique encoding for each time-step (word’s position in a 
sentence)

● Distance between any two time-steps should be consistent across sentences 
with different lengths.

● Our model should generalize to longer sentences without any efforts. Its 
values should be bounded.

● It must be deterministic.
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Positional Embeddings

● Fourier features
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Positional Embeddings

What the Sinusoidal functions
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Positional Embeddings

What the Sinusoidal functions
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Question

How to encode ZIP code?
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Answer

● Hashing 
● Geocoding
● Target encoding
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Target encoding

For example, if you have a feature called city and a target variable called salary, 
you can replace each city name with the average salary of all data points 
belonging to that city¹. This way, you can capture some information about the 
relationship between city and salary in a single number.

Target encoding can help improve the performance of machine learning models 
that work better with numerical features than categorical features. However, it 
can also introduce some problems such as overfitting or leakage if not done 
properly.
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target-encoding

https://www.kaggle.com/code/ryanholbrook/target-encoding


Target encoding

● It can cause overfitting or leakage if not done properly
● It can lose some information about the frequency or distribution of 

categorical features
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How to avoid overfitting?



Target encoding

 One way is to use cross-validation or nested folds, where you split your training 
data into several subsets and fit the encoder on one subset and apply it on 
another subset.
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Discretization/bucketizing/binning

● Turning a continuous feature into a discrete feature (quantization)
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Discretization

● Turning a continuous feature into a discrete feature (quantization)
● Create buckets for different ranges

○ Incorporate knowledge/expertise about each variable by constructing specific buckets
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Discretization

● Turning a continuous feature into a discrete feature (quantization)
● Create buckets for different ranges

○ Incorporate knowledge/expertise about each variable by constructing specific buckets

● Examples
○ Income

■ Lower income: x < $35,000
■ Middle income: $35,000 < x < $100,000
■ High income: x > $100,000

47



Discretization

● Turning a continuous feature into a discrete feature (quantization)
● Create buckets for different ranges

○ Incorporate knowledge/expertise about each variable by constructing specific buckets

● Examples
○ Income

■ Lower income: x < $35,000
■ Middle income: $35,000 <= x < $100,000
■ High income: x >= $100,000

○ Age
■ Minors: x < 18
■ College: 18 <= x < 22
■ Young adult: 22 <= x < 30
■ 30 <= x < 40
■ 40 <= x < 65
■ Seniors: x >= 65
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6. Feature Extraction
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What

● A process of transforming the original data into a new representation that 
can be more suitable for machine learning tasks (informative & 
non-redundant)

● A way of reducing the dimensionality and complexity of data by selecting or 
creating relevant features.
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Why

● To improve the performance, efficiency and interpretability of machine 
learning models.

● To overcome the problems of high dimensionality, such as noise, redundancy, 
sparsity and curse of dimensionality.
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PCA: Principal Component Analysis

52



LDA: Linear Discriminant Analysis
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ICA: Independent Component Analysis

PCA: finds directions of maximal 
variance in gussian data

ICA: Finds direction of maximal 
independence in nonguassian data
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LLE: Locally Linear Embedding
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Reducing the dimensionality of data while preserving the local structure of the data



t-SNE: t-distributed Stochastic Neighbor Embedding
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manifold learning

Constructs probabilities of 
choosing points based on 
similarity in high dimensions. 
Then, finds a low-dimensional 
representation that preserves 
these probabilities.

https://scikit-learn.org/stable/modules/manifold.html


Autoencoders
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Feature Crossing

● Combine two or more features to create a new feature

58

Marriage Single Married Single Single Married

Children 0 2 1 0 1

Marriage & 
children

Single, 0 Married, 2 Single, 1 Single, 0 Married, 1



Feature Crossing

● Helps models learn non-linear relationships between variables
● Warning – feature crossing can blow up your feature space

○ e.g. Feature A and B both have 100 categories → Feature A x B will have 10,000 categories
○ Need even more data to learn this new feature space
○ Blowing up feature space can increase risk of overfitting
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Very common in RecSys & CTR with 
models like DeepFM and xDeepFM

https://www.ijcai.org/proceedings/2017/0239.pdf
https://arxiv.org/pdf/1803.05170.pdf
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