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Agenda
1. Model Evaluation
2. Offline Model Evaluation
3. Test Set Adequacy
4. Statistical Bounds
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1. Model Evaluation
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Model evaluation

● Offline evaluation: before deployed
● Online evaluation: after deployed
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Test in production. Will cover this later!



Model offline evaluation

● Baselines
● Evaluation methods
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Baselines

● Numbers by themselves mean little
● Task: binary classification, 90% POSITIVE, 10% NEGATIVE
● F1 score: 0.90
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Is it model good or bad?



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution
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Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution
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● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 ?

Random
[label distribution]

0.98 ?
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● Example: misinformation classification
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○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1
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Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class
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[preds = [0] * n]
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Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class

● Simple heuristics
○ E.g.: classify tweets based on whether 

they contain links to unreliable sources
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Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class

● Simple heuristics
○ E.g.: classify tweets based on whether 

they contain links to unreliable sources
● Human baseline

○ What’s human-level performance?
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● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 0.02

Random
[label distribution]

0.98 0.01

Most common
[preds = [0] * n]
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Human expert ? ?



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class

● Simple heuristics
○ E.g.: classify tweets based on whether 

they contain links to unreliable sources
● Human baseline

○ What’s human-level performance?
● Existing solutions
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● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 0.02

Random
[label distribution]

0.98 0.01

Most common
[preds = [0] * n]

? ?

Simple heuristics ? ?

Human expert ? ?

3rd party API ? ?



2. Offline Model Evaluation
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Evaluation methods

1. Perturbation Tests
2. Invariance Tests
3. Directional Expectation Tests
4. Model Calibration
5. Confidence Measurement
6. Slice-based Evaluation
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Perturbation tests

● Problem: users input might contain noise, making it different from test data
○ Examples:

■ Speech recognition: background noise
■ Object detection: different lighting
■ Text inputs: typos, intentional misspelling (e.g. looooooooong)

○ Model does well on test set, but fails in production
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
● The more sensitive the model is to noise:

○ The harder it is to maintain
○ The more vulnerable the model is to adversarial attacks
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
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If small changes cause model’s performance to fluctuate, 
you might want to make model more robust:
● Add noise to training data
● Add more training data
● Choose another model



● Motivation: some input changes shouldn’t lead to changes in outputs
○ Changing race/gender info shouldn’t change predicted approval outcome
○ Changing name shouldn’t affect resume screening results

Invariance tests
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Disparity in home lending costs minorities millions, researchers find (CBS News, 2019)

https://www.cbsnews.com/news/mortgage-discrimination-black-and-latino-paying-millions-more-in-interest-study-shows/


● Motivation: some input changes shouldn’t lead to changes in outputs
● Idea: keep certain features the same, but randomly change values of 

sensitive features

Invariance tests
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If changing sensitive features can change model’s 
outputs, there might be biases!



● Motivation: some changes to inputs should cause predictable changes in 
outputs
○ E.g. when predicting housing prices:

■ Increasing bedroom size shouldn’t decrease the predicted price
■ Decreasing square footage shouldn’t increase the predicted price

Directional expectation tests
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● Motivation: some changes to inputs should cause predictable changes in 
outputs

● Idea: keep most features the same, but change certain features to see if 
outputs change predictably

Directional expectation tests
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If increasing lot size consistently reduces the predicted 
price, you might want to investigate why!



Model calibration

“One of the most important tests of a forecast — I would argue that it is the 
single most important one — is called calibration.”

Nate Silver, The Signal and the Noise
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Model calibration

● If you predict team A wins in A vs. B match with 60% probability:
○ In 100 A vs. B match, A should win 60% of the time!
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For instance, a well calibrated (binary) classifier should classify the samples such that among the samples to which it 
gave a predict_proba value close to 0.8, approximately 80% actually belong to the positive class

Need to ensure the top class is correct on average

Image from Probability calibration (sklearn)

score

Model calibration: binary case

https://scikit-learn.org/stable/glossary.html#term-predict_proba
https://scikit-learn.org/stable/modules/calibration.html


Model calibration: recsys

● Recommend movies to a user who 
watches 70% comedy, 30% action

● What happens if you recommend most 
likely watched movies?

28

Movie title Watch probability

Comedy 1 0.8

Comedy 2 0.73

Comedy 3 0.68

Comedy 4 0.67

Action 1 0.29

Action 2 0.2

Science fiction 0.04



Model calibration: recsys

● Recommend movies to a user who 
watches 70% comedy, 30% action

● What happens if you recommend most 
likely watched movies?

29

Movie title Watch probability

Comedy 1 0.8

Comedy 2 0.73

Comedy 3 0.68

Comedy 4 0.67

Action 1 0.29

Action 2 0.2

Science fiction 0.04

Need to calibrate recommendations to 
include 70% comedy, 30% action



Model calibration: CTR

● 2 ads: A & B
● Model predicts click probability: A (10%), B (8%)
● How to estimate number of clicks you’ll actually get if model isn’t calibrated?
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Confidence measurement

● Usefulness threshold for each individual prediction
● Uncertain predictions can cause annoyance & catastrophic consequences
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Confidence measurement

● How to measure the confidence level of each prediction?
● What to do with predictions below the confidence threshold?

○ Skip
○ Ask for more information
○ Loop in humans
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Slice-based evaluation
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Different performance on different slices

● Classes
○ Might perform worse on minority classes

● Subgroups
○ Gender
○ Location
○ Time of using the app
○ etc.
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Same performance on different slices with 
different cost
● User churn prediction

○ Paying users are more critical

● Predicting adverse drug reactions
○ Patients with underlying conditions are more critical
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⚠ Focusing on improving only overall metrics might hurt 
performance on subgroups ⚠



Slice-based evaluation: example

● Majority group: 90%
● Minority group: 10%

36

Majority 
accuracy

Minority 
accuracy

Model A 98% 80%

Model B 95% 95%

Zoom poll: Which model would you go with?



Slice-based evaluation: example

● Majority group: 90%
● Minority group: 10%

37

Majority 
accuracy

Minority 
accuracy

Overall 
accuracy

Model A 98% 80% 96.2%

Model B 95% 95% 95%

Coarse-grained evaluation can hide:
● model biases
● potential for improvement



Simpson’s paradox

● Models A and B to predict whether a customer will buy your product
● A performs better than B overall
● B performs better than A on both female & male customers
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Simpson’s paradox

39

Treatment 1 Treatment 2

Group A 93% (81/87) 87% (234/270)

Group B 73% (192/263) 69% (55/80)

Overall 78% (273/350) 83% (289/350)

Numbers from a kidney stone treatment study. (Charig et al., 1986)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1339981/


Simpson’s paradox: Berkeley graduate admission ‘73

40
Sex Bias in Graduate Admissions: Data from Berkeley (Bickel et al., 1975)

Bias against women in the process, or is 
there…?

https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf


Simpson’s paradox: Berkeley graduate admission ‘73

41
Sex Bias in Graduate Admissions: Data from Berkeley (Bickel et al., 1975)

⚠ Aggregation can conceal and contradict actual situation ⚠

https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf


Slice-based evaluation

● Evaluate your model on different slices
○ E.g. when working with website traffic data, slice data among:

■ gender
■ mobile vs. desktop
■ browser
■ location

● Check for consistency over time
○ E.g. evaluate your model on data slices from each day
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Slice-based evaluation

● Improve model’s performance both overall and on critical data
● Help avoid biases
● Even when you don’t think slices matter, slicing can:

○ give you confidence on your model (to convince your boss)
○ might reveal non-ML problems
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How to identify slices?

● Heuristics
○ Might require subject matter expertise

● Error analysis
○ Patterns among misclassified samples

● Slice finder
○ Exhaustive/beam search
○ Clustering
○ Decision tree

44Slice finder: Automated data slicing for model validation (Chung et al., 2019)
Subgroup Discovery Algorithms: A Survey and Empirical Evaluation (Sumyea Helal, 2016)

https://ieeexplore.ieee.org/abstract/document/8731353
http://jcst.ict.ac.cn/EN/10.1007/s11390-016-1647-1


How to identify slices?

● Heuristics
○ Might require subject matter expertise

● Error analysis
○ Patterns among misclassified samples

● Slice finder
○ Exhaustive/beam search
○ Clustering
○ Decision tree

45Slice finder: Automated data slicing for model validation (Chung et al., 2019)
Subgroup Discovery Algorithms: A Survey and Empirical Evaluation (Sumyea Helal, 2016)

Will go into details next TA session!

https://ieeexplore.ieee.org/abstract/document/8731353
http://jcst.ict.ac.cn/EN/10.1007/s11390-016-1647-1


4. Test Set Adequacy
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Evaluation of test set adequacy

● Software engineering uses tests to find bugs in the code before it goes to 
production

● The same applies to the code that interacts with the statistical model (input, 
feature eng., output, serving)

● But the model itself also needs to be evaluated with test examples
● The test examples should reveal the model's flaws before it goes to 

production
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Neuron Coverage

● A measure of how well a test set activates the units (neurons) of a neural 
network model

● A good test set should activate all or most of the units
● A method to create such a test set is to:

○ Label random examples and feed them to the model
○ Check which units are activated by the examples (above a threshold)
○ Mark the activated units as covered if the prediction is correct
○ Repeat until all or most of the units are covered
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Mutation test

● We create different versions of the model by changing the training data or 
the model structure

● We call these versions mutants
● We apply the test set to each mutant and see if it makes a wrong prediction 

or not
● We call this killing a mutant
● A good test set should kill all or most of the mutants
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3. Statistical Bound
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Statistical interval for classification error

● Suppose we have a classification model and we want to estimate its error 
ratio (err), which is the fraction of incorrect predictions on a test set of size N.

● We can use a statistical technique to obtain an interval that contains err with 
high probability (confidence level).

● The interval is given by                                 where                                 and       is 
a constant that depends on the confidence level.

● The table below shows some values of       for different confidence levels
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Statistical interval for classification error

● For example, if we have a test set of size 100 and we observe an error ratio 
of 0.2, then with 99% confidence, the true error ratio lies in the interval      

which is approximately                 .
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Bootstrapping statistical interval

● A general technique for estimating the uncertainty of any metric for 
classification or regression

● Based on creating B random samples of the test set by sampling with 
replacement

● For each sample Sb, compute the metric mb using the model
● Sort the B values of mb in ascending order
● To obtain a c% confidence interval, find the smallest interval [a,b] that covers 

at least c% of the sum of all mb values
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Bootstrapping statistical interval example

Suppose we have B = 10 bootstrap samples of the test set and we compute the 
metric mb for each sample as [9.8,7.5,7.9,10.1,9.7,8.4,7.1,9.9,7.7,8.5] and we 
want a confidence level of c = 80%.
● We sort them in ascending order: [7.1, 7.5, 7.7, 7.9, 8.4, 8.5, 9.7, 9.8, 9.9, 

10.1]
● We find the smallest interval [a,b] that covers at least 80% of the sum of all 

mb values
● The sum of all mb values is S = 86.6
● The smallest interval that covers at least 80% of S is [7.46, 9.92], which 

covers 69.4 out of 86.6
● Therefore, our confidence interval is [7.46, 9.92]
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Bootstrapping prediction interval for regression

Given a model f and an input x, find an interval [fmin(x),fmax(x)] where f(x) lies with 
confidence c%: 
● Choose a confidence level c (usually 95% or 99%)
● Choose a number of bootstrap samples B (usually 100)
● For each bootstrap sample, train a model and get a prediction for x
● Sort the predictions and find the smallest interval [a,b] that covers at least 

c% of them
● Return f(x) and the interval [a,b] as the prediction interval
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Bootstrapping prediction interval for regression

● Suppose we have a model f that predicts house prices based on features x. 
We want to find the prediction interval for a house with x = [3 bedrooms, 2 
bathrooms, 1500 sqft]. 

● We use bootstrapping with c = 95% and B = 100. 
● We get 100 predictions for x, ranging from $200k to $300k. 
● The smallest interval that covers 95% of them is [a,b] = [$210k, $290k]. 
● We return f(x) = $250k and the interval [$210k, $290k] as the prediction 

interval.
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