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Agenda
1. Model Compression
2. Cloud vs Edge Computing
3. Optimizing Model for Edge
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1. Model Compression
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Bigger, better, slower 4



No free lunch!
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Model 
expressiveness

Model size



Model compression

1. Quantization
2. Knowledge distillation
3. Pruning
4. Low-ranked factorization

6



Model compression: active research/development
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https://opensourcelibs.com/libs/model-compression | https://awesomeopensource.com/projects/model-compression 

https://opensourcelibs.com/libs/model-compression
https://awesomeopensource.com/projects/model-compression


Model compression: quantization

● Reduces the size of a model by using fewer bits to represent parameter 
values

○ E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)
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100M params

32-bit
400MB

16-bit
200MB



Model compression: quantization

● Reduces the size of a model by using fewer bits to represent parameter 
values

○ E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)
○ 1-bit representation: BinaryConnect, Xnor-Net
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Model compression: quantization
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Pros

1. Reduce memory footprint
2. Increase computation speed

a. Bigger batch size
b. Computation on 16 bits is faster than 

on 32 bits



Model compression: quantization
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Pros Cons

1. Reduce memory footprint
2. Increase computation speed

a. Bigger batch size
b. Computation on 16 bits is faster than 

on 32 bits

1. Smaller range of values
2. Values rounded to 0

Need efficient 
rounding/scaling techniques



Model compression: quantization

● Post-training quantization

● Quantization-aware training
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torch.quantization.convert(model, inplace=True)



Model compression: knowledge distillation

● Train a small model (“student”) to mimic the results of a larger model (“teacher”)
○ Teacher & student can be trained at the same time.
○ E.g. DistillBERT, reduces size of BERT by 40%, and increases inference speed by 60%, while 

retaining 97% language understanding.
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DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (Sanh et al., 2019)

https://arxiv.org/abs/1910.01108


Model compression: knowledge distillation

● Train a small model (“student”) to mimic the results of a larger model (“teacher”)
● Pros:

○ Fast to train student network if teacher is pre-trained.
○ Teacher and student can be completely different architectures.

● Cons:
○ If teacher is not pre-trained, may need more data & time to first train teacher.
○ Sensitive to applications and model architectures.
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Model compression: pruning

● Originally used for decision trees to remove uncritical sections
● Neural networks: reducing over-parameterization

15



Model compression: pruning methods

1. Remove nodes
a. Changing architectures & reducing number of params
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Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params

17
Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

https://arxiv.org/abs/1506.02626


Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params
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Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

???

https://arxiv.org/abs/1506.02626


Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params
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Makes models more sparse
● lower memory footprint
● increased inference speed

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (Frankle et al., ICLR 2019)

https://openreview.net/forum?id=rJl-b3RcF7


Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params
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Can be used for architecture search



Model compression: factorization

The key idea behind low-rank factorization is to replace high-dimensional 
tensors with lower-dimensional tensors. 

One type of low-rank factorization is compact convolutional filters, where 
the over-parameterized convolution filters are replaced with compact 
blocks.
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Model compression: factorization

● 3 x 3 matrix can be written as a product of 3 x 1 
and 1 x 1

○ 6 params instead of 9
○ SqueezeNets achieves AlexNet-level accuracy on ImageNet 

with 50 times fewer parameters.

● Replace convolution filters (many parameters) with 
compact blocks

○ E.g. MobileNets:
○ decomposes the standard convolution of size Dk × Dk × M into a depthwise 

convolution (Dk × Dk × 1) and a pointwise convolution (1 × 1 × M)
■ (a) are replaced by depthwise convolution
■ (b) and pointwise convolution
■ (c) to build a depthwise separable filter
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 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (Howard et al., 2017)

https://arxiv.org/abs/1704.04861


Make models smaller: case study
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How We Scaled Bert To Serve 1+ Billion Daily Requests on CPUs (Roblox, 2020)

https://blog.roblox.com/2020/05/scaled-bert-serve-1-billion-daily-requests-cpus/


2. Cloud vs Edge Computing
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Cloud computing Edge computing

Computations Done on cloud (servers) Done on edge devices (browsers, phones, tablets, 
laptops, smart watches, activity watchers, cars, etc.) 

Examples ● Most queries to Alexa, Siri, Google 
Assistant

● Google Translate for rare language pairs 
(e.g. English - Yiddish)

● Wake words for Alexa, Siri, Google Assistant
● Google Translate for popular language pairs 

(e.g. English - Spanish)
● Predictive text
● Unlocking with fingerprints, faces



Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well
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Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well

● Don’t have to worry about network latency
○ Network latency might be a bigger problem than inference latency
○ Many use cases are impossible with network latency

■ e.g. predictive texting
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Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well

● Don’t have to worry about network latency
○ Network latency might be a bigger problem than inference latency
○ Many use cases are impossible with network latency

■ e.g. predictive texting

● Fewer concerns about privacy
○ Don’t have to send user data over networks (which can be intercepted)
○ Cloud database breaches can affect many people
○ Easier to comply with regulations (e.g. GDPR)
○ Caveat: edge computing might make it easier to steal user data by just taking the device
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Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well

● Don’t have to worry about network latency
○ Network latency might be a bigger problem than inference latency
○ Many use cases are impossible with network latency

■ e.g. predictive texting

● Fewer concerns about privacy
○ Don’t have to send user data over networks (which can be intercepted)
○ Cloud database breaches can affect many people
○ Easier to comply with regulations (e.g. GDPR)
○ Caveat: edge computing might make it easier to steal user data by just taking the device

● Cheaper
○ The more computations we can push to the edge, the less we have to pay for servers
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A cloud mistake can bankrupt your startup!

30



Hybrid

● Common predictions are precomputed and stored on device
● Local data centers: e.g. each warehouse has its own server rack
● Predictions are generated on cloud and cached on device
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Challenges of ML on the edge

● Device not powerful enough to run models
○ Energy constraint
○ Computational power constraint
○ Memory constraint

32



Challenges of ML on the edge

1. Hardware: Make hardware more powerful
2. Model compression: Make models smaller
3. Model optimization: Make models faster
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Make hardware more powerful: big companies
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⚠ unreliable narrator ⚠
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Hardware startup Raised ($M) Year founded Location
SambaNova 1100 2017 Bay Area
Graphcore 682 2016 UK
Groq 362 2016 Bay Area
Nuvia 293 2019 Bay Area
Wave Computing 203 2008 Bay Area
Cambricon 200 2016 China
Cerebras 112 2016 Bay Area
Hailo 88 2017 Israel
Habana Labs 75 2016 Israel
Kneron 73 2015 San Diego
Prophesee 65 2014 France
Syntiant 65 2017 LA
Groq 62 2016 Bay Area
EdgeQ 53 2018 Bay Area
LeapMind 50 2012 Japan

Make hardware more powerful: startups



Future of ML: online and on-device
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3. Optimizing Models for Edge
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Soumith Chintala, creator of PyTorch (VentureBeat, 2020)

https://venturebeat.com/2020/01/02/top-minds-in-machine-learning-predict-where-ai-is-going-in-2020/


How to run model on different hardware backends?
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Thanks Chris Hoge for the cute slide!



Backends: memory layout + compute primitives
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Deep learning 
models

high-dim 
instructions

Hardware 
backend

low-dim compute 
primitives

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)

https://arxiv.org/abs/1802.04799


1. Compatibility
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BackendFrontend

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??
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? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

Growing
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2.   Performance across frameworks
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No end-to-end optimization across frameworks

df = pd.read_csv(“train.csv”)
filtered = df.dropna()
features = np.mean(filtered)
model.fit(features)



2.   Performance
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df = pd.read_csv(“train.csv”)
filtered = df.dropna()
features = np.mean(filtered)
model.fit(features)

Typical data science workloads using NumPy, Pandas and 
TensorFlow run 23× slower one thread compared to 

hand-optimized code
(Palkar et al., ‘18)

Evaluating End-to-End Optimization for Data Analytics Applications in Weld (Palkar et al., VLDB 2018). Slide inspired by Palkar’s talk.

http://www.vldb.org/pvldb/vol11/p1002-palkar.pdf
https://www.youtube.com/watch?v=JbTqNuCIJM4&ab_channel=DataCouncil


Frontend & backend
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BackendFrontend

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

● Framework developers:
○ Offer support across a narrow range of server-class hardware

● Hardware vendors:
○ Offer their own SDK / kernel libraries for a narrow range of 

frameworks (CUDA, OpenVino toolkit, etc.)

Hardware lock-in



Optimizing compilers: lowering & optimizing

45

Compatibility Lowering hardware-native code for your models

Performance Optimizing your models to run on that hardware

Generating



Compatibility
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BackendFrontend

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

Growing

G
row

ing



Compatibility: bridging frontend & backend
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Machine 
codeIntermediate Representations

Common language 



Compatibility: different IR levels
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High-level
IRs Tuned IRs

Low-level
IRs

Machine 
code

Intermediate Representations

Computation graphs
Hardware agnostic
E.g.: XLA HLO, 
TensorFlowLite, 
TensorRT

Language agnostic
E.g.: LLVM, NVCC

- Hand-tuned
- ML-based



Performance: how to optimize your models

● Standard optimizations
○ vectorization
○ loop tiling
○ explicit parallelism
○ cache
○ etc.

49
https://colfaxresearch.com/how-series/#ses-10



Operator fusion
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https://mboehm7.github.io/teaching/ss19_amls/04_AdvancedCompilation.pdf



Operator fusion

51
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)

https://arxiv.org/abs/1802.04799


Graph optimization
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https://developer.nvidia.com/tensorrt

Original 
graph

Vertical fusion

Horizontal fusion



Why is it hard?

● Hardware-dependent
○ Different processing/memory/cache/latency hiding
○ Different compute primitives
○ Different instruction sets (RISC-V, ARM, x86, etc.)

● Operator-dependent
● New models being developed all the time
● Many possible paths to execute a graph
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Why is it hard?

● Hardware-dependent
○ Different processing/memory/cache/latency hiding
○ Different compute primitives
○ Different instruction sets

● Operator-dependent
● New models being developed all the time
● Many possible paths to execute a graph
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Hand-tuned:
● Heuristics-based (non-optimal)
● Non-adaptive

○ Custom hardware? New framework? New model?



Idea: automate the optimization process

● What if we explore all possible paths to find the optimal path?
○ Run each path end-to-end to find out how long it takes to execute the path
○ Too slow because of too many possible paths

55



Idea: automate the optimization process

● What if we explore all possible paths to find the optimal path?
○ Run each path end-to-end to find out how long it takes to execute the path
○ Too slow because of too many possible paths
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Combinatorial search 
problem



AutoScheduler

● What if we explore all possible paths to find the optimal path?
○ Run each path end-to-end to find out how long it takes to execute the path
○ Too slow because of too many possible paths
○ Use ML to solve it: narrow down the search space to find approximately the optimal one
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AutoScheduler

1. Break the graph into subgraphs
2. Predict how big each subgraph is
3. Allow time for each subgraph
4. Stitch them together
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AutoScheduler

● cuDNN autotune:
○ for PyTorch on GPU
○ operator-level (only selecting convolutional operator)

● TVM’s autoscheduler:
○ multiple frameworks / multiple hardware

■ automatically adapt to hardware type
○ subgraph-level
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AutoTVM: GPUs

Conv2d operator in ResNet-18 on TITAN X
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TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)

https://arxiv.org/abs/1802.04799


TVM: compiler stack
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

https://tvm.apache.org/



TVM: Apache OSS

● Compile time:
○ might be slow (lots of paths to explore/evaluate)
○ hours, even days

● Compile once, no need to update even when weights are updated
○ especially useful when you have multiple copies of models on multiple machines
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Install TVM the Easy Way - tlcpack.ai
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Compatibility: browsers
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Browser



ML in browsers

● Compile models to JavaScript
○ TensorFlow.js, Synaptic, and brain.js
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https://www.tensorflow.org/js
https://github.com/cazala/synaptic
https://github.com/BrainJS/brain.js


ML in browsers

● Compile models to JavaScript
● Compile models to WASM (WebAssembly)

○ Open standard that allows running executable programs in browsers
○ Supported by 93% 
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https://caniuse.com/wasm 

https://caniuse.com/wasm
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