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1. Model Compression
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Model compression: active research/development

The Top 121 Model Compression Open Source Projects on Github

Categories > Machine Learning > Model Compression

Nni 10910

An open source AutoML toolkit for
automate machine learning lifecycle,
including feature engineering, neural
architecture search, model
compression and hyper-parameter
tuning.

Ghostnet 1823

CV backbones including GhostNet,
TinyNet and TNT, developed by
Huawei Noah's Ark Lab.

Knowledge Distillation 1291
Pytorch

A PyTorch implementation for
exploring deep and shallow
knowledge distillation (KD)
experiments with flexibility

Pocketflow 2676

An Automatic Model Compression
(AutoMC) framework for developing
smaller and faster Al applications.

Channel Pruning 1021

Channel Pruning for Accelerating
Very Deep Neural Networks
(ICCV'17)

Awesome Pruning 1361

A curated list of neural network
pruning resources.

Neuronblocks 1404

NLP DNN Toolkit - Building Your
NLP DNN Models Like Playing Lego

Model Optimization 1189

A toolkit to optimize ML models for
deployment for Keras and
TensorFlow, including quantization
and pruning.

Awesome Knowledge 1612
Distillation

Awesome Knowledge-Distillation.
53 KEEIRAIFNIRZE Bpaper(2014-
2021),

https://opensourcelibs.com/libs/model-compression | https://awesomeopensource.com/projects/model-compression



https://opensourcelibs.com/libs/model-compression
https://awesomeopensource.com/projects/model-compression

Model compression: quantization

e Reduces the size of a model by using fewer bits to represent parameter

values
o E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)

100M params

N

32-bit 16-bit
400MB 200MB



Model compression: quantization

e Reduces the size of a model by using fewer bits to represent parameter

values
o E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)
o 1-bit representation: BinaryConnect, Xnor-Net

Exclusive: Apple acquires Xnor.ai, edge Al spin-out
from Paul Allen’s Al2, for price in $200M range

BY ALAN BOYLE, TAYLOR SOPER & TODD BISHOP on January 15, 2020 at 10:44 am



Model compression: quantization

Pros

1. Reduce memory footprint

2. Increase computation speed

a. Bigger batch size
b. Computation on 16 bits is faster than
on 32 bits

BFloat16: The secret to high performance
on Cloud TPUs
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Model compression: quantization

Pros Cons
1. Reduce memory footprint 1. Smaller range of values
2. Increase computation speed 2. Values rounded to O

a. Bigger batch size

b. Computation on 16 bits is faster than Need .efﬁcient. .
on 32 bits rounding/scaling techniques
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Model compression: quantization

e Post-training quantization
torch.quantization.convert (model, inplace= )

e Quantization-aware training

12



Model compression: knowledge distillation

e Train a small model (“student”) to mimic the results of a larger model (“teacher”)
o Teacher & student can be trained at the same time.
o E.g. DistillBERT, reduces size of BERT by 40%, and increases inference speed by 60%, while
retaining 97% language understanding.

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (Sanh et al., 2019)
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https://arxiv.org/abs/1910.01108

Model compression: knowledge distillation

e Train a small model (“student”) to mimic the results of a larger model (“teacher”)

e Pros:

o Fast to train student network if teacher is pre-trained.

o Teacher and student can be completely different architectures.
e Cons:

o If teacher is not pre-trained, may need more data & time to first train teacher.
o Sensitive to applications and model architectures.
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Model compression: pruning

e Originally used for decision trees to remove uncritical sections
e Neural networks: reducing over-parameterization
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Model compression: pruning methods

1. Remove nodes
a. Changing architectures & reducing number of params
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Model compression: pruning methods

2. Find least useful params & set to O

a. Number of params remains the same
b. Reducing number of non-zero params

before pruning

Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

pruning ___
synapses

pruning
neurons

after pruning
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https://arxiv.org/abs/1506.02626

Model compression: pruning methods

77
2. Find|least useful params|& setto O

a. Number of params remains the same
b. Reducing number of non-zero params

before pruning

Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

pruning
synapses

e

pruning

neurons

after pruning
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https://arxiv.org/abs/1506.02626

Model compression: pruning methods

2. Find least useful params & set to O

a. Number of params remains the same
b. Reducing number of non-zero params

\

Makes models more sparse
e lower memory footprint
e increased inference speed

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (Frankle et al., ICLR 2019)



https://openreview.net/forum?id=rJl-b3RcF7

Model compression: pruning methods

2. Find least useful params & set to O

a. Number of params remains the same
b. Reducing number of non-zero params

\

Can be used for architecture search
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Model compression: factorization

The key idea behind low-rank factorization is to replace high-dimensional
tensors with lower-dimensional tensors.

One type of low-rank factorization is compact convolutional filters, where

the over-parameterized convolution filters are replaced with compact
blocks.

21



Model compression: factorization

e 3 x 3 matrix can be written as a product of 3 x 1 %ﬁ %

and 1x1 —N—
o 6 params instead of 9 (a) Standard Convolution Filters
o SqueezeNets achieves AlexNet-level accuracy on ImageNet
with 50 times fewer parameters. 5 . —
» i

e Replace convolution filters (many parameters) with

compact blocks
o E.g. MobileNets:

O  decomposes the standard convolution of size Dk x Dk x M into a depthwise
convolution (Dk x Dk x 1) and a pointwise convolution (1 x 1 x M)
m (a) are replaced by depthwise convolution

m (b) and pointwise convolution — N —
| (C) tO bl.“l.d d depthWise Sepa rable ﬁ'.ter (c) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-

text of Depthwise Separable Convolution

DK <—M—>

(b) Depthwise Convolutional Filters

22
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (Howard et al., 2017)



https://arxiv.org/abs/1704.04861

Make models smaller: case study

Scaling Bert: Key Improvements

@ Throughput (inferences per second) from utilizing 32 cores

4000

@ Latency in ms (50th percentile)
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Scenario #1: Scenario #2: Scenario #3:
"Baseline Bert" “Smaller Model" “Smaller Inputs®
(PyTorch Bert + (PyTorch Distilbert + (Pytorch Distilbert +

Fixed Shape Input) Fixed Shape Input) Dynamic Shape Input)

3015

0

Scenario #4:
"Smaller Weights®
(Pytorch Distilbert +
Dynamic Shape Input +
Quantization)

400

300

200

100

How We Scaled Bert To Serve 1+ Billion Daily Requests on CPUs (Roblox, 2020)



https://blog.roblox.com/2020/05/scaled-bert-serve-1-billion-daily-requests-cpus/

2. Cloud vs Edge Computing

24



Cloud computing

Computations Done on cloud (servers)

Examples e  Most queries to Alexa, Siri, Google
Assistant
e Google Translate for rare language pairs
(e.g. English - Yiddish)

Edge computing

Done on edge devices (browsers, phones, tablets,
laptops, smart watches, activity watchers, cars, etc.)

Wake words for Alexa, Siri, Google Assistant
Google Translate for popular language pairs
(e.g. English - Spanish)

e Predictive text

e Unlocking with fingerprints, faces

25



Benefits of edge computing

e (Can work without (Internet) connections or with unreliable connections
o  Many companies have strict no-Internet policy
o  Caveat: devices are capable of doing computations but apps need external information
m eg. ETA needs external real-time traffic information to work well

26



Benefits of edge computing

e Don’t have to worry about network latency
o  Network latency might be a bigger problem than inference latency
o  Many use cases are impossible with network latency
m e.g. predictive texting
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Benefits of edge computing

e Fewer concerns about privacy
o Don't have to send user data over networks (which can be intercepted)
o  Cloud database breaches can affect many people
o  Easier to comply with regulations (e.g. GDPR)
o Caveat: edge computing might make it easier to steal user data by just taking the device

28



Benefits of edge computing

e Cheaper

o  The more computations we can push to the edge, the less we have to pay for servers
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A cloud mistake can bankrupt your startup!

Climbing Cloud Costs

AWS bills for several big customers increased significantly in recent years

$300 million
250
200
150
100

50

Pinterest Capital One Adobe Infor Intuit
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Hybrid

e Common predictions are precomputed and stored on device
e Local data centers: e.g. each warehouse has its own server rack
e Predictions are generated on cloud and cached on device
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Challenges of ML on the edge

e Device not powerful enough to run models
o Energy constraint
o Computational power constraint
o Memory constraint

32



Challenges of ML on the edge

1. Hardware: Make hardware more powerful
2. Model compression: Make models smaller
3. Model optimization: Make models faster

33



Make hardware more powerful: big companies

Musk Boasts Tesla Has 'Best Chip in
the World'

The CEO's newest big prediction: that Tesla will have self-driving
cars on the road next year.

Bloomberg
APR 23, 2019

I. unreliable narrator A

o billion
a_c_;hlne " transistors
learning

controller.

Apr 14,2020 - Technology

Scoop: Google readies its own chip
for future Pixels, Chromebooks 5y



Make hardware more powerful: startups

Hardware startup

SambaNova
Graphcore
Groqg

Nuvia

Wave Computing
Cambricon
Cerebras
Hailo
Habana Labs
Kneron
Prophesee
Syntiant
Groqg

EdgeQ
LeapMind

682
362
293
203
200
112
88
75
73
65
65
62
53
50

Raised (SM) Year founded Location
1100

2017 Bay Area
2016 UK
2016 Bay Area
2019 Bay Area
2008 Bay Area
2016 China
2016 Bay Area
2017 Israel
2016 Israel
2015 San Diego
2014 France
2017 LA

2016 Bay Area
2018 Bay Area
2012 Japan
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Future of ML: online and on-device

less

hardware constraint

more

botch Pre_d?c-ﬁon
edge_ Qompu-ﬁng

botch pre‘dicﬁon

cloud computing
NETFLIX

. online. Pre_d?c'ﬁon

e;lge_ compvﬁng
s @

online, Pre_d?c—ﬁon
cloud compu-ﬁv\g
®¢ Google Assistant

mode] inference. lod—e_y\ct/

ow
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3. Optimizing Models for Edge
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“With PyTorch and TensorFlow, you’ve seen the frameworks sort of converge. The

reason quantization comes up, and a bunch of other lower-level efficiencies come up,

is becausejthe next war is compilers for the frameworksj— XLA, TVM, PyTorch has

Glow, a lot of innovation is waiting to happen,” he said. “For the next few years,

you’re going to see ... how to quantize smarter, how to fuse better, how to use GPUs

more efficiently, [and] how to automatically compile for new hardware.”

Soumith Chintala, creator of PyTorch (VentureBeat, 2020)
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https://venturebeat.com/2020/01/02/top-minds-in-machine-learning-predict-where-ai-is-going-in-2020/

How to run model on different hardware backends?

classifier > “tabby cat”

O PyTorch TensorFlow

>~ LightGBM

39

Thanks Chris Hoge for the cute slide!



Backends: memory layout + compute primitives

Memory Subsystem Architecture
CPU GPU ‘TPU’

Deep learning | high-dim L1/TX
models instructions LiDQ L1l _RF } RF § RF §| RF_
implicitly managed mixed explicitly managed
Hardware low-dim compute
backend primitives Compute Primitive
EEEE NEEEE
[ | [ ] ]| A EEEE NEEEE
r B EEEE NEEEE
. ., 'm EEEE EEEN
scalar vector tensor
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TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)



https://arxiv.org/abs/1802.04799

Buimoun

1. Compatibility

Growing

O PyTorch ? ?

TensorFlow ? ?
O tearn ? ?
>~ LightGBM ? ?

.
wéx 2?7
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2. Performance across frameworks

. [ |
df = pd.read csv(“train.csv”) O P)/TOrCh I.!I pGndCIS
filtered = df.dropna () 1
features = np.mean (filtered) *:""
model.fit (features) "1
Ollearn v,
TensorFlow

No end-to-end optimization across frameworks
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2. Performance

df = pd.read csv(“train.csv”) O PyTOrCh I I p(]ndCIS
filtered = df.dropna/ ()
features = np.mean(filtered)
model.fit (features)
. NumPy

TensorFlow

Typical data science workloads using NumPy, Pandas and
TensorFlow run 23x slower one thread compared to
hand-optimized code
(Palkar et al., ‘18)

43

Evaluating End-to-End Optimization for Data Analytics Applications in Weld (Palkar et al., VLDB 2018). Slide inspired by Palkar’s talk.


http://www.vldb.org/pvldb/vol11/p1002-palkar.pdf
https://www.youtube.com/watch?v=JbTqNuCIJM4&ab_channel=DataCouncil

Frontend & backend

Bacy -

N, =

/Q/_ o proced
/7(@/70/

O PyTorch
TensorFlow
e Framework developers:
o  Offer support across a narrow range of server-class hardware
. learn e Hardware vendors:
. o  Offer their own SDK/ kernel libraries for a narrow range of
~z LightGBM frameworks (CUDA, OpenVino toolkit, etc.)

- Hardware lock-in
- 4
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Optimizing compilers: lowering & optimizing

Generating

/

Compatibility Lowering hardware-native code for your models

Performance Optimizing your models to run on that hardware
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Buimoun

Compatibility

Growing

O PyTorch ?

TensorFlow ?
. learn ?
>~ LightGBM ?

?
a‘z'x ?
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Compatibility: bridging frontend & backend

O PyTorch
Common language
TensorFlow
. . Machi
© (Cearn > Intermediate Representations ) v

>~ LightGBM

y 4
2%
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Compatibility: different IR levels

O PyTorch

Intermediate Representations

TensorFlow

High-level - Low-level - Machine
‘ learn IRs ‘ Tuned IRs IRs code

P2
' nghtGBM Computation graphs - Hand-tuned Language agnostic
Hardware agnostic - ML-based E.g.: LLVM, NVCC
E.g: XLA HLO,
TensorFlowLite,
TensorRT
Vi
A# Pow
™
g@
Mul Add




Performance: how to optimize your models

e Standard optimizations
o vectorization

I LOOP TILING: REGISTER BLOCKING

- Original: Tiled:
loop tlllng for (i=0; i<m; i++) for (ii=0; ii<m; ii+=TILE)

. . . for (3=0; j<n; j++) for (j=0; j<n; Jj++)
explicit parallelism . *B[31 For (imil; L<LA4TTEE; 444)
cache i=0

etc.

[ - cached, LRU eviction policy

O O O O

[ - cache miss (read from memory, slow)
[] - cache hit (read from cache, fast)

'_”_‘E'_‘

PR R GRS R WA
| | N
¢« B WN RO

Cache size: 4
TILE=4
(must be tuned to cache size)

HHEQ

Cache hit rate without tiling: 0%
Cache hit rate with tiling: 50%

2|lzl=

DI S R S R S A G W
nnunonn
« B WN KO

L T e T ol N SO o

LI L | | | | || (T | | |

WNFOWNRFOWNRFOWNEKFO
o
Il
N

i
E

OPTIMZATON
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https://colfaxresearch.com/how-series/#ses-10



Operator fusion

R for( i in 1:n )
4 > tmpl[i,1] = s * B[i,1];
* for( i in 1:n )
+/\c tmp2[i,1] = A[i,1] + tmp1[i,1];
v~ for( i in 1:n )
A * R[i,1] = tmp2[i,1] * C[i,1];
T
s B &

for( 1 in 1:n )
R[i)l] = (A[iJi] + S*B[i)l]) * C[iJl];

https://mboehm7.github.io/teaching/ss19_amls/04_AdvancedCompilation.pdf
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Operator fusion

200 B w/o fusion
_g' ' B w/ fusion
8 1.50 -

n

(%

-2 1.00 -

s

Q

% 0.50
0.00 -

conv+bn+-relu depthwise- rnn cell Istm cell
128x28x28 conv+bn+relu hidden:128 hidden:128
1x1x128x256 512x14x14
3x3x512

Figure 4: Performance comparison between fused and
non-fused operations. TVM generates both operations.
Tested on NVIDIA Titan X.

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)
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https://arxiv.org/abs/1802.04799

Graph optimization

next input

concat

1x1 conv. 3x3 conv. 3x3 conv. 3x3 conv.

max pool

1x1 conv. 3x3 conv.

concat

Original
graph

next input

concat

1x1 CBR 3x3 CBR 5x5 CBR 1x1 CBR

1x1 CBR 1x1 CBR max pool

concat

Vertical fusion

next input

concat

3x3 CBR 5x5 CBR

1x1 CBR max pool

concat

Horizontal fusion

https://developer.nvidia.com/tensorrt



Why is it hard?

e Hardware-dependent

o Different processing/memory/cache/latency hiding
o Different compute primitives
o Different instruction sets (RISC-V, ARM, x86, etc.)

e Operator-dependent
e New models being developed all the time
e Many possible paths to execute a graph

53



Why is it hard?

e Hardware-dependent

o Different processing/memory/cache/latency hiding
o Different compute primitives
o Different instruction sets

e Operator-dependent
e New models being developed all the time
e Many possible paths to execute a graph

Hand-tuned:
e Heuristics-based (non-optimal)
e Non-adaptive
o Custom hardware? New framework? New model?

54



ldea: automate the optimization process

e \What if we explore all possible paths to find the optimal path?

o Run each path end-to-end to find out how long it takes to execute the path
o Too slow because of too many possible paths

55



ldea: automate the optimization process

e \What if we explore all possible paths to find the optimal path?

o Run each path end-to-end to find out how long it takes to execute the path
o Too slow because of too many possible paths

Combinatorial search
problem

56



AutoScheduler

e \What if we explore all possible paths to find the optimal path?

o Use ML to solve it: narrow down the search space to find approximately the optimal one

57



AutoScheduler

il

Break the graph into subgraphs
Predict how big each subgraph is
Allow time for each subgraph
Stitch them together
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AutoScheduler

e cuDNN autotune:

o for PyTorch on GPU
o operator-level (only selecting convolutional operator)

e [VM’s autoscheduler:
o  multiple frameworks / multiple hardware
m automatically adapt to hardware type
o subgraph-level

59



AutoTVM: GPUs

Conv2d operator in ResNet-18 on TITAN X

o
=
=
b}
O
o
(0p]
o
=
)
% —— TVM: ML-based Model
e 001 .= Tym: Blackbox Genetic Algorithm
0254 TVM: Random Search
——== Baseline: cuDNN
0.00

0 100 200 300 400 500 600 700 800

Number of Trials
60

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)



https://arxiv.org/abs/1802.04799

TVM: compiler stack

Relay ~—[ frontends

—

——

- TS~
S I S
.' AutoTVM TOPI 1
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Target TIR
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-

W

\

node

e

[ Runtime

https://tvm.apache.org/

61



TVM: Apache 0SS

e Compile time:

o might be slow (lots of paths to explore/evaluate)
o hours, even days

e Compile once, no need to update even when weights are updated
o especially useful when you have multiple copies of models on multiple machines
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Install TVM the Easy Way - tlcpack.ai

About TLCPack

TLCPack — Tensor learning compiler binary package. It is a community maintained binary builds of deep learning compilers. TLCPack does not contain any
additional source code release. It takes source code from Apache TVM and build the binaries by turning on different build configurations. Please note that
additional licensing conditions may apply(e.g. CUDA EULA for the cuda enabled package) when you use the binary builds.

TLCPack is not part of Apache and is run by thirdparty community volunteers. Please refer to the official Apache TVM website for Apache source releases.

Licenses for TVM and its dependencies can be found in the github repository.

Build 0.8.dev107+g7b11b9217 Nightly

Your OS Linux Mac Windows

Run this Command: conda install tlcpack-nightly -c tlcpack

Copyright ® 2020 TLCPack. Apache TVM, Apache, the Apache feather, and the Apache TVM project logo are either trademarks or registered trademarks of the Apache Software
Foundation.
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Compatibility: browsers

O PyTorch

TensorFlow

.ﬂn ‘ Browser ‘

>~ LightGBM




ML in browsers

e Compile models to JavaScript
o TensorFlow.js, Synaptic, and brain.js
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https://www.tensorflow.org/js
https://github.com/cazala/synaptic
https://github.com/BrainJS/brain.js

ML in browsers

e Compile models to WASM (WebAssembly)

o Open standard that allows running executable programs in browsers
o Supported by 93%

WebAssembly &-o

Global

WebAssembly or "wasm" is a new portable, size- and load-time-
efficient format suitable for compilation to the web.

https://caniuse.com/wasm

f all users
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https://caniuse.com/wasm
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