Machine Learning Systems Design

Modeling Pipeline Lecture 14: Model Resource Management

CE 40959 Spring 2023 Ali Zarezade SharifMLSD.github.io

Agenda

- **1. Model Compression**
- **2. Cloud vs Edge Computing**
- **3. Optimizing Model for Edge**

1. Model Compression

ML evolution

Bigger, better, slower 44

No free lunch!

Model size

Model compression

- 1. Quantization
- 2. Knowledge distillation
- 3. Pruning
- 4. Low-ranked factorization

Model compression: active research/development

The Top 121 Model Compression Open Source Projects on Github

Categories > Machine Learning > Model Compression

- Reduces the size of a model by using fewer bits to represent parameter values
	- E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)

- Reduces the size of a model by using fewer bits to represent parameter values
	- E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)
	- 1-bit representation: BinaryConnect, Xnor-Net

Exclusive: Apple acquires Xnor.ai, edge Al spin-out from Paul Allen's AI2, for price in \$200M range

BY ALAN BOYLE, TAYLOR SOPER & TODD BISHOP on January 15, 2020 at 10:44 am

BFloat16: The secret to high performance on Cloud TPUs

● Post-training quantization

torch.quantization.convert(model, inplace**=**True)

● Quantization-aware training

Model compression: knowledge distillation

- Train a small model ("student") to mimic the results of a larger model ("teacher")
	- Teacher & student can be trained at the same time.
	- E.g. DistillBERT, reduces size of BERT by 40%, and increases inference speed by 60%, while retaining 97% language understanding.

Model compression: knowledge distillation

- Train a small model ("student") to mimic the results of a larger model ("teacher")
- Pros:
	- Fast to train student network if teacher is pre-trained.
	- Teacher and student can be completely different architectures.
- Cons:
	- If teacher is not pre-trained, may need more data & time to first train teacher.
	- Sensitive to applications and model architectures.

Model compression: pruning

- Originally used for decision trees to remove uncritical sections
- Neural networks: reducing over-parameterization

1. Remove nodes

a. Changing architectures & reducing number of params

Remove nodes

- 2. Find least useful params & set to 0
	- a. Number of params remains the same
	- b. Reducing number of non-zero params

Remove nodes

- 2. Find least useful params & set to 0
	- a. Number of params remains the same

???

b. Reducing number of non-zero params

Remove nodes

- 2. Find least useful params & set to 0
	- a. Number of params remains the same
	- b. Reducing number of non-zero params

Makes models more sparse

- lower memory footprint
- **•** increased inference speed

Remove nodes

- 2. Find least useful params & set to 0
	- a. Number of params remains the same
	- b. Reducing number of non-zero params

Can be used for architecture search

Model compression: factorization

The key idea behind low-rank factorization is to replace high-dimensional tensors with lower-dimensional tensors.

One type of low-rank factorization is compact convolutional filters, where the over-parameterized convolution filters are replaced with compact blocks.

Model compression: factorization

- 3×3 matrix can be written as a product of 3×1 and 1×1
	- 6 params instead of 9
	- SqueezeNets achieves AlexNet-level accuracy on ImageNet with 50 times fewer parameters.
- Replace convolution filters (many parameters) with compact blocks
	- E.g. MobileNets:
	- decomposes the standard convolution of size *Dk* × *Dk* × *M* into a depthwise convolution (*Dk* × *Dk* × 1) and a pointwise convolution (1 × 1 × *M*)
		- (a) are replaced by depthwise convolution
		- (b) and pointwise convolution
		- (c) to build a depthwise separable filter

Make models smaller: case study

Scaling Bert: Key Improvements

2. Cloud vs Edge Computing

- Can work without (Internet) connections or with unreliable connections
	- Many companies have strict no-Internet policy
	- **Caveat**: devices are capable of doing computations but apps need external information
		- e.g. ETA needs external real-time traffic information to work well

- Can work without (Internet) connections or with unreliable connections
	- Many companies have strict no-Internet policy
	- **Caveat**: devices are capable of doing computations but apps need external information
		- e.g. ETA needs external real-time traffic information to work well
- Don't have to worry about network latency
	- Network latency might be a bigger problem than inference latency
	- Many use cases are impossible with network latency
		- e.g. predictive texting

- Can work without (Internet) connections or with unreliable connections
	- Many companies have strict no-Internet policy
	- **Caveat**: devices are capable of doing computations but apps need external information
		- e.g. ETA needs external real-time traffic information to work well
- Don't have to worry about network latency
	- Network latency might be a bigger problem than inference latency
	- Many use cases are impossible with network latency
		- e.g. predictive texting
- Fewer concerns about privacy
	- Don't have to send user data over networks (which can be intercepted)
	- Cloud database breaches can affect many people
	- Easier to comply with regulations (e.g. GDPR)
	- **Caveat**: edge computing might make it easier to steal user data by just taking the device

- Can work without (Internet) connections or with unreliable connections
	- Many companies have strict no-Internet policy
	- **Caveat**: devices are capable of doing computations but apps need external information
		- e.g. ETA needs external real-time traffic information to work well
- Don't have to worry about network latency
	- Network latency might be a bigger problem than inference latency
	- Many use cases are impossible with network latency
		- e.g. predictive texting
- **•** Fewer concerns about privacy
	- Don't have to send user data over networks (which can be intercepted)
	- Cloud database breaches can affect many people
	- Easier to comply with regulations (e.g. GDPR)
	- **Caveat**: edge computing might make it easier to steal user data by just taking the device
- **Cheaper**
	- \circ The more computations we can push to the edge, the less we have to pay for servers

A cloud mistake can bankrupt your startup!

Climbing Cloud Costs

AWS bills for several big customers increased significantly in recent years

Source: The Information reporting

Hybrid

- Common predictions are **precomputed and stored** on device
- Local data centers: e.g. each warehouse has its own server rack
- Predictions are generated on cloud and cached on device

Challenges of ML on the edge

- Device not powerful enough to run models
	- Energy constraint
	- Computational power constraint
	- Memory constraint

Challenges of ML on the edge

- 1. Hardware: Make hardware more powerful
- 2. Model compression: Make models smaller
- 3. Model optimization: Make models faster

Make hardware more powerful: big companies

Musk Boasts Tesla Has 'Best Chip in the World'

The CEO's newest big prediction: that Tesla will have self-driving cars on the road next year.

Bloomberg

APR 23, 2019

Apr 14, 2020 - Technology

Scoop: Google readies its own chip for future Pixels, Chromebooks

Make hardware more powerful: startups

Future of ML: online and on-device

3. Optimizing Models for Edge

"With PyTorch and TensorFlow, you've seen the frameworks sort of converge. The reason quantization comes up, and a bunch of other lower-level efficiencies come up, is because the next war is compilers for the frameworks $-$ XLA, TVM, PyTorch has Glow, a lot of innovation is waiting to happen," he said. "For the next few years, you're going to see ... how to quantize smarter, how to fuse better, how to use GPUs more efficiently, [and] how to automatically compile for new hardware."

Soumith Chintala, creator of PyTorch ([VentureBeat,](https://venturebeat.com/2020/01/02/top-minds-in-machine-learning-predict-where-ai-is-going-in-2020/) 2020)

How to run model on different hardware backends?

Backends: memory layout + compute primitives

Memory Subsystem Architecture

1. Compatibility

Growing

2. Performance across frameworks

 $df = pd.read.csv("train.csv")$ filtered = df.dropna() $features = npmean(filtered)$ model.fit(features)

No end-to-end optimization across frameworks

2. Performance

 $df = pd.read.csv("train.csv")$ $filtered = df.dropna()$ $features = npmean(filtered)$ model.fit(features)

Typical data science workloads using NumPy, Pandas and TensorFlow run 23× slower one thread compared to hand-optimized code (Palkar et al., '18)

[Evaluating End-to-End Optimization for Data Analytics Applications in Weld](http://www.vldb.org/pvldb/vol11/p1002-palkar.pdf) (Palkar et al., VLDB 2018). Slide inspired by [Palkar's talk.](https://www.youtube.com/watch?v=JbTqNuCIJM4&ab_channel=DataCouncil)

Frontend & backend

G PyTorch

TensorFlow

LightGBM

- ϵ . Fue measure the described energy ϵ ● Framework developers:
- Offer support across a narrow range of server-class hardware
► Bardware vendors:
- Hardware vendors:
- ? ? ? ? ? ? ? ? ? ? frameworks (CUDA, OpenVino toolkit, etc.) ○ Offer their own SDK / kernel libraries for a narrow range of

Optimizing compilers: lowering & optimizing

Compatibility

Growing

Compatibility: bridging frontend & backend

47

48

Performance: how to optimize your models

- Standard optimizations
	- vectorization
	- loop tiling
	- explicit parallelism
	- cache
	- etc.

for $(ii=0; ii\leq m; ii+=TILE)$ for $(i=0; i \leq n; i++)$ for $(i=ii; i*ii+TILE; i++)*$ $... = ... * b[i];$ $i=0$ **TELEVITY** i Turki <u>u ili ili</u> $i=1$ **Times** <u>a ina manana</u> $i=2$ **THEFT** MERIT TITLET $i=3$ \Box

OPTIMIZATION colfaxresearch.com/how-series © Colfax International, 2013-2017

Operator fusion

Operator fusion

Figure 4: Performance comparison between fused and non-fused operations. TVM generates both operations. Tested on NVIDIA Titan X.

Why is it hard?

- Hardware-dependent
	- Different processing/memory/cache/latency hiding
	- Different compute primitives
	- Different instruction sets (RISC-V, ARM, x86, etc.)
- Operator-dependent
- New models being developed all the time
- Many possible paths to execute a graph

Why is it hard?

● Hardware-dependent

- Different processing/memory/cache/latency hiding
- Different compute primitives
- Different instruction sets
- Operator-dependent
- New models being developed all the time
- Many possible paths to execute a graph

Hand-tuned:

- Heuristics-based (non-optimal)
- Non-adaptive
	- **○ Custom hardware? New framework? New model?**

Idea: automate the optimization process

- What if we explore all possible paths to find the optimal path?
	- Run each path end-to-end to find out how long it takes to execute the path
	- Too slow because of too many possible paths

Idea: automate the optimization process

- What if we explore all possible paths to find the optimal path?
	- Run each path end-to-end to find out how long it takes to execute the path
	- Too slow because of too many possible paths

Combinatorial search problem

AutoScheduler

- What if we explore all possible paths to find the optimal path?
	- Run each path end-to-end to find out how long it takes to execute the path
	- Too slow because of too many possible paths
	- Use ML to solve it: narrow down the search space to find approximately the optimal one

AutoScheduler

- 1. Break the graph into subgraphs
- 2. Predict how big each subgraph is
- 3. Allow time for each subgraph
- 4. Stitch them together

AutoScheduler

- cuDNN autotune:
	- for PyTorch on GPU
	- operator-level (only selecting convolutional operator)
- TVM's autoscheduler:
	- multiple frameworks / multiple hardware
		- automatically adapt to hardware type
	- subgraph-level

AutoTVM: GPUs

Conv2d operator in ResNet-18 on TITAN X

TVM: compiler stack

TVM: Apache OSS

- Compile time:
	- might be slow (lots of paths to explore/evaluate)
	- hours, even days
- Compile once, no need to update even when weights are updated
	- especially useful when you have multiple copies of models on multiple machines

Install TVM the Easy Way - tlcpack.ai

About TLCPack

TLCPack - Tensor learning compiler binary package. It is a community maintained binary builds of deep learning compilers. TLCPack does not contain any additional source code release. It takes source code from Apache TVM and build the binaries by turning on different build configurations. Please note that additional licensing conditions may apply(e.g. CUDA EULA for the cuda enabled package) when you use the binary builds.

TLCPack is not part of Apache and is run by thirdparty community volunteers. Please refer to the official Apache TVM website for Apache source releases.

Licenses for TVM and its dependencies can be found in the github repository.

Copyright © 2020 TLCPack. Apache TVM, Apache, the Apache feather, and the Apache TVM project logo are either trademarks or registered trademarks of the Apache Software Foundation.

Compatibility: browsers

ML in browsers

- Compile models to JavaScript
	- o [TensorFlow.js,](https://www.tensorflow.org/js) [Synaptic](https://github.com/cazala/synaptic), and [brain.js](https://github.com/BrainJS/brain.js)

ML in browsers

- Compile models to JavaScript
- Compile models to WASM (WebAssembly)
	- Open standard that allows running executable programs in browsers
	- Supported by 93%

Machine Learning Systems Design

Modeling Pipeline Next Lecture: High-Performance Modeling

CE 40959 Spring 2023 Ali Zarezade SharifMLSD.github.io