
Machine Learning Systems Design
Modeling Pipeline
Lecture 14: Model Resource Management

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. Model Compression
2. Cloud vs Edge Computing
3. Optimizing Model for Edge

2

1. Model Compression

3

Bigger, better, slower 4

No free lunch!

5

Model
expressiveness

Model size

Model compression

1. Quantization
2. Knowledge distillation
3. Pruning
4. Low-ranked factorization

6

Model compression: active research/development

7
https://opensourcelibs.com/libs/model-compression | https://awesomeopensource.com/projects/model-compression

https://opensourcelibs.com/libs/model-compression
https://awesomeopensource.com/projects/model-compression

Model compression: quantization

● Reduces the size of a model by using fewer bits to represent parameter
values

○ E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)

8

100M params

32-bit
400MB

16-bit
200MB

Model compression: quantization

● Reduces the size of a model by using fewer bits to represent parameter
values

○ E.g. half-precision (16-bit) or integer (8-bit) instead of full-precision (32-bit)
○ 1-bit representation: BinaryConnect, Xnor-Net

9

Model compression: quantization

10

Pros

1. Reduce memory footprint
2. Increase computation speed

a. Bigger batch size
b. Computation on 16 bits is faster than

on 32 bits

Model compression: quantization

11

Pros Cons

1. Reduce memory footprint
2. Increase computation speed

a. Bigger batch size
b. Computation on 16 bits is faster than

on 32 bits

1. Smaller range of values
2. Values rounded to 0

Need efficient
rounding/scaling techniques

Model compression: quantization

● Post-training quantization

● Quantization-aware training

12

torch.quantization.convert(model, inplace=True)

Model compression: knowledge distillation

● Train a small model (“student”) to mimic the results of a larger model (“teacher”)
○ Teacher & student can be trained at the same time.
○ E.g. DistillBERT, reduces size of BERT by 40%, and increases inference speed by 60%, while

retaining 97% language understanding.

13
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (Sanh et al., 2019)

https://arxiv.org/abs/1910.01108

Model compression: knowledge distillation

● Train a small model (“student”) to mimic the results of a larger model (“teacher”)
● Pros:

○ Fast to train student network if teacher is pre-trained.
○ Teacher and student can be completely different architectures.

● Cons:
○ If teacher is not pre-trained, may need more data & time to first train teacher.
○ Sensitive to applications and model architectures.

14

Model compression: pruning

● Originally used for decision trees to remove uncritical sections
● Neural networks: reducing over-parameterization

15

Model compression: pruning methods

1. Remove nodes
a. Changing architectures & reducing number of params

16

Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params

17
Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

https://arxiv.org/abs/1506.02626

Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params

18
Learning both Weights and Connections for Efficient Neural Networks (Han et al., 2015)

???

https://arxiv.org/abs/1506.02626

Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params

19

Makes models more sparse
● lower memory footprint
● increased inference speed

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (Frankle et al., ICLR 2019)

https://openreview.net/forum?id=rJl-b3RcF7

Model compression: pruning methods

1. Remove nodes
2. Find least useful params & set to 0

a. Number of params remains the same
b. Reducing number of non-zero params

20

Can be used for architecture search

Model compression: factorization

The key idea behind low-rank factorization is to replace high-dimensional
tensors with lower-dimensional tensors.

One type of low-rank factorization is compact convolutional filters, where
the over-parameterized convolution filters are replaced with compact
blocks.

21

Model compression: factorization

● 3 x 3 matrix can be written as a product of 3 x 1
and 1 x 1

○ 6 params instead of 9
○ SqueezeNets achieves AlexNet-level accuracy on ImageNet

with 50 times fewer parameters.

● Replace convolution filters (many parameters) with
compact blocks

○ E.g. MobileNets:
○ decomposes the standard convolution of size Dk × Dk × M into a depthwise

convolution (Dk × Dk × 1) and a pointwise convolution (1 × 1 × M)
■ (a) are replaced by depthwise convolution
■ (b) and pointwise convolution
■ (c) to build a depthwise separable filter

22
 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (Howard et al., 2017)

https://arxiv.org/abs/1704.04861

Make models smaller: case study

23
How We Scaled Bert To Serve 1+ Billion Daily Requests on CPUs (Roblox, 2020)

https://blog.roblox.com/2020/05/scaled-bert-serve-1-billion-daily-requests-cpus/

2. Cloud vs Edge Computing

24

25

Cloud computing Edge computing

Computations Done on cloud (servers) Done on edge devices (browsers, phones, tablets,
laptops, smart watches, activity watchers, cars, etc.)

Examples ● Most queries to Alexa, Siri, Google
Assistant

● Google Translate for rare language pairs
(e.g. English - Yiddish)

● Wake words for Alexa, Siri, Google Assistant
● Google Translate for popular language pairs

(e.g. English - Spanish)
● Predictive text
● Unlocking with fingerprints, faces

Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well

26

Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well

● Don’t have to worry about network latency
○ Network latency might be a bigger problem than inference latency
○ Many use cases are impossible with network latency

■ e.g. predictive texting

27

Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well

● Don’t have to worry about network latency
○ Network latency might be a bigger problem than inference latency
○ Many use cases are impossible with network latency

■ e.g. predictive texting

● Fewer concerns about privacy
○ Don’t have to send user data over networks (which can be intercepted)
○ Cloud database breaches can affect many people
○ Easier to comply with regulations (e.g. GDPR)
○ Caveat: edge computing might make it easier to steal user data by just taking the device

28

Benefits of edge computing

● Can work without (Internet) connections or with unreliable connections
○ Many companies have strict no-Internet policy
○ Caveat: devices are capable of doing computations but apps need external information

■ e.g. ETA needs external real-time traffic information to work well

● Don’t have to worry about network latency
○ Network latency might be a bigger problem than inference latency
○ Many use cases are impossible with network latency

■ e.g. predictive texting

● Fewer concerns about privacy
○ Don’t have to send user data over networks (which can be intercepted)
○ Cloud database breaches can affect many people
○ Easier to comply with regulations (e.g. GDPR)
○ Caveat: edge computing might make it easier to steal user data by just taking the device

● Cheaper
○ The more computations we can push to the edge, the less we have to pay for servers

29

A cloud mistake can bankrupt your startup!

30

Hybrid

● Common predictions are precomputed and stored on device
● Local data centers: e.g. each warehouse has its own server rack
● Predictions are generated on cloud and cached on device

31

Challenges of ML on the edge

● Device not powerful enough to run models
○ Energy constraint
○ Computational power constraint
○ Memory constraint

32

Challenges of ML on the edge

1. Hardware: Make hardware more powerful
2. Model compression: Make models smaller
3. Model optimization: Make models faster

33

Make hardware more powerful: big companies

34

⚠ unreliable narrator ⚠

35

Hardware startup Raised ($M) Year founded Location
SambaNova 1100 2017 Bay Area
Graphcore 682 2016 UK
Groq 362 2016 Bay Area
Nuvia 293 2019 Bay Area
Wave Computing 203 2008 Bay Area
Cambricon 200 2016 China
Cerebras 112 2016 Bay Area
Hailo 88 2017 Israel
Habana Labs 75 2016 Israel
Kneron 73 2015 San Diego
Prophesee 65 2014 France
Syntiant 65 2017 LA
Groq 62 2016 Bay Area
EdgeQ 53 2018 Bay Area
LeapMind 50 2012 Japan

Make hardware more powerful: startups

Future of ML: online and on-device

36

3. Optimizing Models for Edge

37

38

Soumith Chintala, creator of PyTorch (VentureBeat, 2020)

https://venturebeat.com/2020/01/02/top-minds-in-machine-learning-predict-where-ai-is-going-in-2020/

How to run model on different hardware backends?

39
Thanks Chris Hoge for the cute slide!

Backends: memory layout + compute primitives

40

Deep learning
models

high-dim
instructions

Hardware
backend

low-dim compute
primitives

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)

https://arxiv.org/abs/1802.04799

1. Compatibility

41

BackendFrontend

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

Growing

G
row

ing

2. Performance across frameworks

42

No end-to-end optimization across frameworks

df = pd.read_csv(“train.csv”)
filtered = df.dropna()
features = np.mean(filtered)
model.fit(features)

2. Performance

43

df = pd.read_csv(“train.csv”)
filtered = df.dropna()
features = np.mean(filtered)
model.fit(features)

Typical data science workloads using NumPy, Pandas and
TensorFlow run 23× slower one thread compared to

hand-optimized code
(Palkar et al., ‘18)

Evaluating End-to-End Optimization for Data Analytics Applications in Weld (Palkar et al., VLDB 2018). Slide inspired by Palkar’s talk.

http://www.vldb.org/pvldb/vol11/p1002-palkar.pdf
https://www.youtube.com/watch?v=JbTqNuCIJM4&ab_channel=DataCouncil

Frontend & backend

44

BackendFrontend

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

● Framework developers:
○ Offer support across a narrow range of server-class hardware

● Hardware vendors:
○ Offer their own SDK / kernel libraries for a narrow range of

frameworks (CUDA, OpenVino toolkit, etc.)

Hardware lock-in

Optimizing compilers: lowering & optimizing

45

Compatibility Lowering hardware-native code for your models

Performance Optimizing your models to run on that hardware

Generating

Compatibility

46

BackendFrontend

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

Growing

G
row

ing

Compatibility: bridging frontend & backend

47

Machine
codeIntermediate Representations

Common language

Compatibility: different IR levels

48

High-level
IRs Tuned IRs

Low-level
IRs

Machine
code

Intermediate Representations

Computation graphs
Hardware agnostic
E.g.: XLA HLO,
TensorFlowLite,
TensorRT

Language agnostic
E.g.: LLVM, NVCC

- Hand-tuned
- ML-based

Performance: how to optimize your models

● Standard optimizations
○ vectorization
○ loop tiling
○ explicit parallelism
○ cache
○ etc.

49
https://colfaxresearch.com/how-series/#ses-10

Operator fusion

50
https://mboehm7.github.io/teaching/ss19_amls/04_AdvancedCompilation.pdf

Operator fusion

51
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)

https://arxiv.org/abs/1802.04799

Graph optimization

52
https://developer.nvidia.com/tensorrt

Original
graph

Vertical fusion

Horizontal fusion

Why is it hard?

● Hardware-dependent
○ Different processing/memory/cache/latency hiding
○ Different compute primitives
○ Different instruction sets (RISC-V, ARM, x86, etc.)

● Operator-dependent
● New models being developed all the time
● Many possible paths to execute a graph

53

Why is it hard?

● Hardware-dependent
○ Different processing/memory/cache/latency hiding
○ Different compute primitives
○ Different instruction sets

● Operator-dependent
● New models being developed all the time
● Many possible paths to execute a graph

54

Hand-tuned:
● Heuristics-based (non-optimal)
● Non-adaptive

○ Custom hardware? New framework? New model?

Idea: automate the optimization process

● What if we explore all possible paths to find the optimal path?
○ Run each path end-to-end to find out how long it takes to execute the path
○ Too slow because of too many possible paths

55

Idea: automate the optimization process

● What if we explore all possible paths to find the optimal path?
○ Run each path end-to-end to find out how long it takes to execute the path
○ Too slow because of too many possible paths

56

Combinatorial search
problem

AutoScheduler

● What if we explore all possible paths to find the optimal path?
○ Run each path end-to-end to find out how long it takes to execute the path
○ Too slow because of too many possible paths
○ Use ML to solve it: narrow down the search space to find approximately the optimal one

57

AutoScheduler

1. Break the graph into subgraphs
2. Predict how big each subgraph is
3. Allow time for each subgraph
4. Stitch them together

58

AutoScheduler

● cuDNN autotune:
○ for PyTorch on GPU
○ operator-level (only selecting convolutional operator)

● TVM’s autoscheduler:
○ multiple frameworks / multiple hardware

■ automatically adapt to hardware type
○ subgraph-level

59

AutoTVM: GPUs

Conv2d operator in ResNet-18 on TITAN X

60
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning (Chen et al., 2018)

https://arxiv.org/abs/1802.04799

TVM: compiler stack

61

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

https://tvm.apache.org/

TVM: Apache OSS

● Compile time:
○ might be slow (lots of paths to explore/evaluate)
○ hours, even days

● Compile once, no need to update even when weights are updated
○ especially useful when you have multiple copies of models on multiple machines

62

Install TVM the Easy Way - tlcpack.ai

63

Compatibility: browsers

64

Browser

ML in browsers

● Compile models to JavaScript
○ TensorFlow.js, Synaptic, and brain.js

65

https://www.tensorflow.org/js
https://github.com/cazala/synaptic
https://github.com/BrainJS/brain.js

ML in browsers

● Compile models to JavaScript
● Compile models to WASM (WebAssembly)

○ Open standard that allows running executable programs in browsers
○ Supported by 93%

66
https://caniuse.com/wasm

https://caniuse.com/wasm

Machine Learning Systems Design
Modeling Pipeline
Next Lecture: High-Performance Modeling

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

