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1. Model Deployment Patterns
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Model deployment
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Deploying a model means to make it available for accepting queries 
generated by the users of the production system.

Once the production system accepts the query, the latter is transformed into 
a feature vector. The feature vector is then sent to the model as input for 
scoring. The result of the scoring then is returned to the user.



Model deployment patterns

A model can be deployed following several patterns:

● statically, as a part of an installable software package
● dynamically on the user’s device,
● dynamically on a server
● via model streaming
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Static deployment

Prepare an installable binary of the entire software. The model is packaged as a 
resource available at the runtime.
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Static deployment

Pros:

● Software has direct access to the model (fast execution time)
● User data doesn’t have to be uploaded to the server at the time of prediction 

(saves time and preserves privacy)
● Model can be called when the user is offline
● Software vendor doesn’t have to care about keeping the model operational; it 

becomes the user’s responsibility.
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Static deployment

Cons:

● Hard to separate machine learning code from application code
● Hard to upgrade model without upgrading application
● Computational requirements may limit deployment options (GPU access)
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Dynamic deployment on user device

Similar to static, but the model is not part of the binary code of the application.
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Dynamic deployment on user device

It can be achieved by:

● deploying model parameters
○ the model file only contains the learned parameters, while the user’s device has installed a 

runtime environment for the model (TensorFlow Lite: TF models, Apple Core ML: sklearn, keras, 
xgboost)
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Dynamic deployment on user device

It can be achieved by:

● deploying model parameters
● deploying a serialized object

○ It uses a model file as a serialized object that the app can deserialize. It avoids runtime dependencies but 
makes updates large and costly.
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Dynamic deployment on user device

It can be achieved by:

● deploying model parameters
● deploying a serialized object
● deploying to the browser

○ TensorFlow.js, have versions that allow to train and run a model in a browser, by using 
JavaScript as a runtime.
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Dynamic deployment on user device

Pros:
● calls to the model will be fast for the user
● reduce load on servers
● better separation of concerns
● easier model updates
● adaptive model selection based on compute resources
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Dynamic deployment on user device

Cons:
    - More bandwidth and startup time for the browser-based deployment.
    - Harder to update the model and keep it consistent across users.
    - Easier for third parties to analyze and manipulate the model.
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Dynamic deployment on a server (VM)

The most frequent deployment pattern is to place the model on servers, and 
make it available as a REST API in the form of a web service, or gRPC service.
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Dynamic deployment on a server (VM)

● A web service receives user requests with 
input data and calls the machine learning 
system to get predictions.

● The predictions are returned as JSON or 
XML strings.

● To handle high load, multiple web service 
instances run on virtual machines in 
parallel.

● A load balancer distributes the requests 
among the instances.
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Dynamic deployment on a server (VM)

Pros:
● Simple and familiar software system.

Cons:
● Need to maintain servers (physical or virtual).
● Network latency and computational overhead.
● Relatively higher cost.
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Dynamic deployment on a server (container)

● A container is like a virtual machine, but it shares the operating system with 
other containers on the same machine.

● The machine learning system and the web service are installed inside a 
container (e.g., Docker).

● A container-orchestration system (e.g., Kubernetes) runs the containers on a 
cluster of servers.

● The cluster can be scaled up or down automatically or manually.

18



Dynamic deployment on a server (container)
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Dynamic deployment on a server (container)

Pros:

● More resource-efficient and flexible than virtual machines.

Cons:

● Still need to maintain servers (physical or virtual).
● Still have network latency and computational overhead.
● More complicated and requires expertise.
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Dynamic deployment on a server (serverless)

● A way of running machine learning systems on 
cloud platforms without managing servers or 
resources

● Requires a zip archive with code, model, and 
entry point function

● Provides an API to submit inputs and receive 
outputs
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Dynamic deployment on a server (serverless)

Pros:
● Supports multiple programming languages and dependencies
● Highly scalable and supports synchronous and asynchronous modes
● Cost-efficient: only pay for compute-time
● Simplifies canary deployment: test new code on a small group of users
● Easy rollbacks: switch back to previous version by replacing zip archive
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Dynamic deployment on a server (serverless)

Cons:
● Has limits on execution time, zip file size, and RAM
● No GPU access for deep models
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Dynamic deployment on a server (model 
streaming)
● Model streaming is a deployment pattern that can be seen as an inverse to 

the REST API
● In REST API, the client sends a request to the server and waits for a 

response (a prediction)
● In streaming, the client sends a request to a stream-processing application 

and receives update events as they happen
● The stream-processing application has a data processing topology that 

defines the data flow and transformations
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Dynamic deployment on a server (model 
streaming)
● Stream-processing engines (SPEs) are frameworks that run on their own 

clusters and distribute the data processing load among the available 
resources (Apache Storm, Apache Spark, and Apache Flink)

● Stream-processing libraries (SPLs) are libraries that can be integrated with 
available resources, such as virtual or physical machines, or a container 
orchestrator (Apache Samza, Apache Kafka Streams, and Akka Streams)
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Dynamic deployment on a server (model 
streaming)
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Dynamic deployment on a server (model 
streaming)
REST API vs Streaming:
● REST APIs are usually employed to let clients send ad-hoc requests that 

don't follow a certain frequently-repeated pattern
● It's the best choice when the client wants the liberty of deciding what to do 

with the API response
● Streaming-based applications provide better resource-efficiency, lower 

latency, security, and fault-tolerance when each request of the client is 
typical, undergoes a certain pattern of transformations, and always results in 
the same actions
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2. Model Deployment Strategies
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Single deployment

It is the simplest one. Once you have a new model, you serialize it into a file, and 
then replace the old file with the new one. You also replace the feature extractor, 
if needed.

How to deploy on users device, cloud or physical server?
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Single deployment

It is also the riskiest strategy. If the new model or the feature extractor contains a 
bug, all users will be affected.
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Silent deployment

● Deploy new and old versions of model and 
feature extractors in parallel

● Only log predictions from new version, don't 
show them to user

● Analyze predictions later to check for bugs

31



Silent deployment

● Pros: No user impact, more time to test new 
model

● Cons: More resource consumption, hard to 
evaluate without user feedback
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Canary deployment

33



Canary deployment

● Pushes the new model version and code to a small fraction of users, 
while keeping the old version running for most users. 

● Contrary to the silent deployment, canary deployment allows validating 
the new model’s performance, and its predictions’ effects. 

● Contrary to the single deployment, canary deployment doesn’t affect 
lots of users in case of possible bugs.
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Canary deployment

Pros:

● Doesn’t affect lots of users in case of possible bugs.

Cons:

● Accept more complexity of having multiple model versions deployed
● Hard to spot rare errors: If you deploy the new version to 5% of users, 

and a bug affects 2% of users, then you have only 0.1% chance that the 
bug will be discovered.
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Multi-armed bandits deployment
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Multi-armed bandits deployment

● After the convergence of the MAB algorithm, most of the time, all users are 
routed to the software version running the best model.

● The MAB algorithm, thus, solves two problems, online model evaluation and 
model deployment simultaneously.
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3. Automated Deployment
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Automated deployment

The model is an important asset, but it’s never delivered alone. There are 
additional assets for production model testing that ensure the model is not 
broken.
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End-to-end test

Only deploy a model in production when it’s accompanied with the following 
assets:

● an end-to-end set that defines model inputs and outputs that always works
● a confidence test set that correctly defines model inputs and outputs, and is 

used to compute the value of the metric
● a performance metric whose value will be calculated on the confidence test 

set by applying the model to it
● the range of acceptable values of the performance metric.

If evaluations failed, the model should not be served to the client.
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Version Sync

● Keep training data, feature extractor, and model versions in sync
● Update versions whenever any of them changes
● Automate deployment of new model version with a script
● Fetch model and feature extractor from repositories and copy to production
● Apply model to end-to-end and confidence test data
● Roll back deployment if prediction error or metric value is unacceptable
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Model version metadata

Each model version must be accompanied with the following code and metadata:
● the name and the version of the library or package used to train the model
● if Python was used to build the model, then requirements.txt (or, alternatively, a 

Docker image name pointing to a specific path on Docker Hub or in your Docker 
registry)

● the name of the learning algorithm, and names and values of the hyperparameters
● the list of features required by the model
● the list of outputs, their types, and how the outputs should be consumed
● the version and location of the data used to train the model
● the version and location of the validation data used to tune model hyperparameters
● the model scoring code that runs the model on new data and outputs the prediction.

The metadata and the scoring code may be saved to a database or to a 
JSON/XML text file. 42



Model version metadata

For audit purposes, the following information must also accompany each 
deployment:

● who built the model and when
● who and when made the decision of deploying that model, and based on what 

grounds
● who reviewed the model for privacy and security compliance purposes.
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4. Model Deployment Best Practices
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Algorithmic efficiency

● Optimize your algorithms for best time and space complexity.
● Avoid using loops whenever possible, and use NumPy or similar tools.
● Use appropriate data structures, list, set, dict (hash table).
● If you need to iterate over a vast collection of elements, use Python generators that 

create a function returning one element at a time, rather than all elements at once.
● Use the cProfile package in Python to find code inefficiencies.
● Boost the speed by using multiprocessing package in Python to run computations in 

parallel; or use a distributed processing framework such as Apache Spark.
● Use PyPy, Numba or similar tools to compile your Python code into fast, optimized 

machine code.
● Serve the parts of your code that need GPU on GPU servers and the rest on regular 

CPU servers.
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Caching

● Cach resource-consuming functions which frequently called with the same 
parameter values

● The simplest cache may be implemented in the application itself, like 
lru_cache decorator in python which wrap a function with a memoizing 
callable that saves up to the maxsize most recent calls.

● In large scale production systems, engineers employ general purpose 
scalable and configurable cache solutions such as Redis or Memcached.
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Delivery format for model and code

Serialization is the most straightforward way to deliver the model and the feature 
extractor code to the production environment (Python pickle, Scikit-learn joblib)

If the production code is written in a compiled language (Java or C/C++), and ML 
Engineers built models using Python, there are three options to deploy for 
production:

● rewrite the code in a compiled, production-environment programming language
● use a model representation standard such as PMML or PFA, or
● use a specialized execution engine such as MLeap
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PMML

The Predictive Model Markup Language (PMML) is an XML-based predictive 
model interchange format that provides a way for data analysts to save and share 
models between PMML-compliant applications.
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<DataDictionary numberOfFields=“3”> <DataField name=“Sepal_Length” optype=“continuous” 
dataType=“double”/> <DataField name=“Petal_Length” optype=“continuous” 
dataType=“double”/> <DataField name=“Species” optype=“categorical” dataType=“string”> 
<Value value=“setosa”/> <Value value=“versicolor”/> <Value value=“virginica”/> 
</DataField> </DataDictionary> <RegressionModel modelName=“Linear_Regression_Model” 
functionName=“regression” algorithmName=“linearRegression”> <MiningSchema> <MiningField 
name=“Sepal_Length” usageType=“active”/> <MiningField name=“Petal_Length” 
usageType=“active”/> <MiningField name=“Species” usageType=“target”/> </MiningSchema> 
<RegressionTable intercept=“-0.24872358602445785”> <NumericPredictor name=“Sepal_Length” 
coefficient=“-0.20594816896319375”/> <NumericPredictor name=“Petal_Length” 
coefficient=“0.22282886310305097”/> </RegressionTable> </RegressionModel>



PFA

● Portable Format for Analytics, is a standard for representing both statistical 
models and data transformation engines. 

● PFA allows us to easily share models and machine learning pipelines across 
heterogeneous systems and provides algorithmic flexibility. 

● Models, pre/post-processing transformations are all functions that can be 
arbitrarily composed, chained, or built into complex workflows. 

● PFA has a form of a JSON or a YAML configuration file.
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Mleap

A  tool that can run and share 
machine learning models and 
pipelines in different systems. It 
can export and import models 
from Spark, scikit-learn, 
TensorFlow, and others using a 
JSON or YAML file format.
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Start with a simple model

● Production deployment can be complex and require solid infrastructure
● Simple models are easier to debug and have fewer dependencies and 

hyperparameters
● Complex models and pipelines are more error-prone and harder to tune
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Test on outsiders

● Test your model on outsiders, not just on test data
● Outsiders can be other team members, company employees, crowdsourcing, 

or real customers
● Testing on outsiders helps avoid personal bias and exposure to different 

users
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