
Machine Learning Systems Design
Deployment and Monitoring
Lecture 17: Model Serving

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. Model Deployment Patterns
2. Model Deployment Strategies
3. Automatic Deployment
4. Model Deployment Best Practices

2

1. Model Deployment Patterns

3

Model deployment

4

Deploying a model means to make it available for accepting queries
generated by the users of the production system.

Once the production system accepts the query, the latter is transformed into
a feature vector. The feature vector is then sent to the model as input for
scoring. The result of the scoring then is returned to the user.

Model deployment patterns

A model can be deployed following several patterns:

● statically, as a part of an installable software package
● dynamically on the user’s device,
● dynamically on a server
● via model streaming

5

Static deployment

Prepare an installable binary of the entire software. The model is packaged as a
resource available at the runtime.

6

Static deployment

Pros:

● Software has direct access to the model (fast execution time)
● User data doesn’t have to be uploaded to the server at the time of prediction

(saves time and preserves privacy)
● Model can be called when the user is offline
● Software vendor doesn’t have to care about keeping the model operational; it

becomes the user’s responsibility.

7

Static deployment

Cons:

● Hard to separate machine learning code from application code
● Hard to upgrade model without upgrading application
● Computational requirements may limit deployment options (GPU access)

8

Dynamic deployment on user device

Similar to static, but the model is not part of the binary code of the application.

9

Dynamic deployment on user device

It can be achieved by:

● deploying model parameters
○ the model file only contains the learned parameters, while the user’s device has installed a

runtime environment for the model (TensorFlow Lite: TF models, Apple Core ML: sklearn, keras,
xgboost)

10

Dynamic deployment on user device

It can be achieved by:

● deploying model parameters
● deploying a serialized object

○ It uses a model file as a serialized object that the app can deserialize. It avoids runtime dependencies but
makes updates large and costly.

11

Dynamic deployment on user device

It can be achieved by:

● deploying model parameters
● deploying a serialized object
● deploying to the browser

○ TensorFlow.js, have versions that allow to train and run a model in a browser, by using
JavaScript as a runtime.

12

Dynamic deployment on user device

Pros:
● calls to the model will be fast for the user
● reduce load on servers
● better separation of concerns
● easier model updates
● adaptive model selection based on compute resources

13

Dynamic deployment on user device

Cons:
 - More bandwidth and startup time for the browser-based deployment.
 - Harder to update the model and keep it consistent across users.
 - Easier for third parties to analyze and manipulate the model.

14

Dynamic deployment on a server (VM)

The most frequent deployment pattern is to place the model on servers, and
make it available as a REST API in the form of a web service, or gRPC service.

15

Dynamic deployment on a server (VM)

● A web service receives user requests with
input data and calls the machine learning
system to get predictions.

● The predictions are returned as JSON or
XML strings.

● To handle high load, multiple web service
instances run on virtual machines in
parallel.

● A load balancer distributes the requests
among the instances.

16

Dynamic deployment on a server (VM)

Pros:
● Simple and familiar software system.

Cons:
● Need to maintain servers (physical or virtual).
● Network latency and computational overhead.
● Relatively higher cost.

17

Dynamic deployment on a server (container)

● A container is like a virtual machine, but it shares the operating system with
other containers on the same machine.

● The machine learning system and the web service are installed inside a
container (e.g., Docker).

● A container-orchestration system (e.g., Kubernetes) runs the containers on a
cluster of servers.

● The cluster can be scaled up or down automatically or manually.

18

Dynamic deployment on a server (container)

19

Dynamic deployment on a server (container)

Pros:

● More resource-efficient and flexible than virtual machines.

Cons:

● Still need to maintain servers (physical or virtual).
● Still have network latency and computational overhead.
● More complicated and requires expertise.

20

Dynamic deployment on a server (serverless)

● A way of running machine learning systems on
cloud platforms without managing servers or
resources

● Requires a zip archive with code, model, and
entry point function

● Provides an API to submit inputs and receive
outputs

21

Dynamic deployment on a server (serverless)

Pros:
● Supports multiple programming languages and dependencies
● Highly scalable and supports synchronous and asynchronous modes
● Cost-efficient: only pay for compute-time
● Simplifies canary deployment: test new code on a small group of users
● Easy rollbacks: switch back to previous version by replacing zip archive

22

Dynamic deployment on a server (serverless)

Cons:
● Has limits on execution time, zip file size, and RAM
● No GPU access for deep models

23

Dynamic deployment on a server (model
streaming)
● Model streaming is a deployment pattern that can be seen as an inverse to

the REST API
● In REST API, the client sends a request to the server and waits for a

response (a prediction)
● In streaming, the client sends a request to a stream-processing application

and receives update events as they happen
● The stream-processing application has a data processing topology that

defines the data flow and transformations

24

Dynamic deployment on a server (model
streaming)
● Stream-processing engines (SPEs) are frameworks that run on their own

clusters and distribute the data processing load among the available
resources (Apache Storm, Apache Spark, and Apache Flink)

● Stream-processing libraries (SPLs) are libraries that can be integrated with
available resources, such as virtual or physical machines, or a container
orchestrator (Apache Samza, Apache Kafka Streams, and Akka Streams)

25

Dynamic deployment on a server (model
streaming)

26

Dynamic deployment on a server (model
streaming)
REST API vs Streaming:
● REST APIs are usually employed to let clients send ad-hoc requests that

don't follow a certain frequently-repeated pattern
● It's the best choice when the client wants the liberty of deciding what to do

with the API response
● Streaming-based applications provide better resource-efficiency, lower

latency, security, and fault-tolerance when each request of the client is
typical, undergoes a certain pattern of transformations, and always results in
the same actions

27

2. Model Deployment Strategies

28

Single deployment

It is the simplest one. Once you have a new model, you serialize it into a file, and
then replace the old file with the new one. You also replace the feature extractor,
if needed.

How to deploy on users device, cloud or physical server?

29

Single deployment

It is also the riskiest strategy. If the new model or the feature extractor contains a
bug, all users will be affected.

30

Silent deployment

● Deploy new and old versions of model and
feature extractors in parallel

● Only log predictions from new version, don't
show them to user

● Analyze predictions later to check for bugs

31

Silent deployment

● Pros: No user impact, more time to test new
model

● Cons: More resource consumption, hard to
evaluate without user feedback

32

Canary deployment

33

Canary deployment

● Pushes the new model version and code to a small fraction of users,
while keeping the old version running for most users.

● Contrary to the silent deployment, canary deployment allows validating
the new model’s performance, and its predictions’ effects.

● Contrary to the single deployment, canary deployment doesn’t affect
lots of users in case of possible bugs.

34

Canary deployment

Pros:

● Doesn’t affect lots of users in case of possible bugs.

Cons:

● Accept more complexity of having multiple model versions deployed
● Hard to spot rare errors: If you deploy the new version to 5% of users,

and a bug affects 2% of users, then you have only 0.1% chance that the
bug will be discovered.

35

Multi-armed bandits deployment

36

Multi-armed bandits deployment

● After the convergence of the MAB algorithm, most of the time, all users are
routed to the software version running the best model.

● The MAB algorithm, thus, solves two problems, online model evaluation and
model deployment simultaneously.

37

3. Automated Deployment

38

Automated deployment

The model is an important asset, but it’s never delivered alone. There are
additional assets for production model testing that ensure the model is not
broken.

39

End-to-end test

Only deploy a model in production when it’s accompanied with the following
assets:

● an end-to-end set that defines model inputs and outputs that always works
● a confidence test set that correctly defines model inputs and outputs, and is

used to compute the value of the metric
● a performance metric whose value will be calculated on the confidence test

set by applying the model to it
● the range of acceptable values of the performance metric.

If evaluations failed, the model should not be served to the client.

40

Version Sync

● Keep training data, feature extractor, and model versions in sync
● Update versions whenever any of them changes
● Automate deployment of new model version with a script
● Fetch model and feature extractor from repositories and copy to production
● Apply model to end-to-end and confidence test data
● Roll back deployment if prediction error or metric value is unacceptable

41

Model version metadata

Each model version must be accompanied with the following code and metadata:
● the name and the version of the library or package used to train the model
● if Python was used to build the model, then requirements.txt (or, alternatively, a

Docker image name pointing to a specific path on Docker Hub or in your Docker
registry)

● the name of the learning algorithm, and names and values of the hyperparameters
● the list of features required by the model
● the list of outputs, their types, and how the outputs should be consumed
● the version and location of the data used to train the model
● the version and location of the validation data used to tune model hyperparameters
● the model scoring code that runs the model on new data and outputs the prediction.

The metadata and the scoring code may be saved to a database or to a
JSON/XML text file. 42

Model version metadata

For audit purposes, the following information must also accompany each
deployment:

● who built the model and when
● who and when made the decision of deploying that model, and based on what

grounds
● who reviewed the model for privacy and security compliance purposes.

43

4. Model Deployment Best Practices

44

Algorithmic efficiency

● Optimize your algorithms for best time and space complexity.
● Avoid using loops whenever possible, and use NumPy or similar tools.
● Use appropriate data structures, list, set, dict (hash table).
● If you need to iterate over a vast collection of elements, use Python generators that

create a function returning one element at a time, rather than all elements at once.
● Use the cProfile package in Python to find code inefficiencies.
● Boost the speed by using multiprocessing package in Python to run computations in

parallel; or use a distributed processing framework such as Apache Spark.
● Use PyPy, Numba or similar tools to compile your Python code into fast, optimized

machine code.
● Serve the parts of your code that need GPU on GPU servers and the rest on regular

CPU servers.

45

Caching

● Cach resource-consuming functions which frequently called with the same
parameter values

● The simplest cache may be implemented in the application itself, like
lru_cache decorator in python which wrap a function with a memoizing
callable that saves up to the maxsize most recent calls.

● In large scale production systems, engineers employ general purpose
scalable and configurable cache solutions such as Redis or Memcached.

46

Delivery format for model and code

Serialization is the most straightforward way to deliver the model and the feature
extractor code to the production environment (Python pickle, Scikit-learn joblib)

If the production code is written in a compiled language (Java or C/C++), and ML
Engineers built models using Python, there are three options to deploy for
production:

● rewrite the code in a compiled, production-environment programming language
● use a model representation standard such as PMML or PFA, or
● use a specialized execution engine such as MLeap

47

PMML

The Predictive Model Markup Language (PMML) is an XML-based predictive
model interchange format that provides a way for data analysts to save and share
models between PMML-compliant applications.

48

<DataDictionary numberOfFields=“3”> <DataField name=“Sepal_Length” optype=“continuous”
dataType=“double”/> <DataField name=“Petal_Length” optype=“continuous”
dataType=“double”/> <DataField name=“Species” optype=“categorical” dataType=“string”>
<Value value=“setosa”/> <Value value=“versicolor”/> <Value value=“virginica”/>
</DataField> </DataDictionary> <RegressionModel modelName=“Linear_Regression_Model”
functionName=“regression” algorithmName=“linearRegression”> <MiningSchema> <MiningField
name=“Sepal_Length” usageType=“active”/> <MiningField name=“Petal_Length”
usageType=“active”/> <MiningField name=“Species” usageType=“target”/> </MiningSchema>
<RegressionTable intercept=“-0.24872358602445785”> <NumericPredictor name=“Sepal_Length”
coefficient=“-0.20594816896319375”/> <NumericPredictor name=“Petal_Length”
coefficient=“0.22282886310305097”/> </RegressionTable> </RegressionModel>

PFA

● Portable Format for Analytics, is a standard for representing both statistical
models and data transformation engines.

● PFA allows us to easily share models and machine learning pipelines across
heterogeneous systems and provides algorithmic flexibility.

● Models, pre/post-processing transformations are all functions that can be
arbitrarily composed, chained, or built into complex workflows.

● PFA has a form of a JSON or a YAML configuration file.

49

Mleap

A tool that can run and share
machine learning models and
pipelines in different systems. It
can export and import models
from Spark, scikit-learn,
TensorFlow, and others using a
JSON or YAML file format.

50

Start with a simple model

● Production deployment can be complex and require solid infrastructure
● Simple models are easier to debug and have fewer dependencies and

hyperparameters
● Complex models and pipelines are more error-prone and harder to tune

51

Test on outsiders

● Test your model on outsiders, not just on test data
● Outsiders can be other team members, company employees, crowdsourcing,

or real customers
● Testing on outsiders helps avoid personal bias and exposure to different

users

52

Machine Learning Systems Design
Deployment and Monitoring
Next Lecture: Model Serving (cont.)

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

