
Machine Learning Systems Design
Deployment and Monitoring
Lecture 18: Model Serving

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. Stream Serving
2. Batch vs Online Serving
3. Model Serving Considerations

2

1. Stream Serving

3

Serving strategies

One fundamental decision you’ll have to make that will affect both your end
users and developers working on your system is how it generates and serves its
predictions to end users: online or batch.

● Batch prediction, which uses only batch features.
● Online prediction that uses only batch features (e.g., precomputed

embeddings).
● Online prediction that uses both batch features and streaming features. This

is also known as streaming prediction.

4

How to pass data between processes?

5

Ride
management

Driver
management

Price
optimizationA simple

ride-sharing
microservice Need ride demand & driver

availability to set price

Need ride demand & price to
incentivize drivers

Need driver availability &
price to show riders

Data passing through databases

6

Ride
management

Driver
management

Price
optimization

DB, DW

Data passing through databases

7

Ride
management

Driver
management

Price
optimization

DB, DW

1. What if processes don’t
share database access?

2. Read & write from
databases can be slow

Data passing through services

8

Ride
management

Driver
management

Price
optimization

POST / GET … requests
REST / RPC

Data passing through services

9

Ride
management

Driver
management

Price
optimization

Inter-service
communication
can blow up

POST / GET … requests
REST / RPC

10

Ride
management

Driver
management

Price
optimization

Ride
management

Driver
management

Price
optimization

DB, DW

Inter-service
communication
bottleneck

Read/write
is slow

POST / GET … requests
REST / RPC

11

Ride
management

Driver
management

Price
optimization

Ride
management

Driver
management

Price
optimization

DB, DW

Inter-service
communication
bottleneck

Read/write
is slow

POST / GET … requests
REST / RPC

Ride
management

Driver
management

Price
optimization

Broker

● In memory
● Highly distributed

Data passing through brokers

12

Ride
management

Driver
management

Price
optimization

Real-time
transport

Need for speed: ride-sharing example

To detect whether a transaction is fraud, need features from:

● this transaction
● user’s recent transactions (e.g. 7 days)
● credit card recent transactions
● recent in-app frauds
● and so on.

13

Need for speed: ride-sharing example

To detect whether a transaction is fraud, need features from:

● this transaction
● user’s recent transactions (e.g. 7 days)
● credit card recent transactions
● recent in-app frauds
● and so on.

14

How to quickly
access these
features?

Real-time transport

15

16

Ride
management

Driver
management

Price
optimization

Ride
management

Driver
management

Price
optimization

Real-time
transport

Request-driven Event-driven

POST / GET … requests
REST / RPC

Real-time transport: pubsub

● Any service can publish to a stream [producer]
● Any service can subscribe to a stream to get info they need [consumer]

17

Real-time transport: pubsub, message queue, etc.

18

Batch processing vs. stream processing

19

Ride
management

Driver
management

Price
optimization

Real-time
transport

Batch processing Stream processing

Ride
management

Driver
management

Price
optimization

DB, DW

Batch processing vs. stream processing

20

Historical data Streaming data

Databases, data warehouses Kafka, Kinesis, Pulsar, etc.

Batch features:
● age, gender, job, city, income
● when account was created

Dynamic features
● locations in the last 10 minutes
● recent activities

Bounded: know when a job finishes Unbounded: never finish

Processing kicked of periodically, in batch
● e.g. MapReduce, Spark

Processing can be kicked off as events arrive
● e.g. Flink, Samza, Spark Streaming

One model, two pipelines

21

One model, two pipelines

22
⚠⚠ A common source of errors in production ⚠⚠

Research vs industry

23

Stream & batch processing

● Batch is a special case of streaming

24
Image by Kostas Tzoumas (Ververica)

https://www.ververica.com/blog/batch-is-a-special-case-of-streaming

25
Machine learning with Flink in Weibo (Qian Yu, QCon 2019)

One model, two pipelines: example

https://www.youtube.com/watch?v=WQ520rWgd9A&ab_channel=FlinkForward

26
Machine learning with Flink in Weibo (Qian Yu, QCon 2019)

https://www.youtube.com/watch?v=WQ520rWgd9A&ab_channel=FlinkForward

Barriers to stream processing

1. Companies don’t see the benefits of streaming
● Systems not at scale
● Batch predictions work fine
● Online predictions would work better but they don’t know that

27

Barriers to stream processing

1. Companies don’t see the benefits of streaming
2. High initial investment on infrastructure
3. Mental shift
4. Python incompatibility

28

2. Batch vs Online Prediction

29

Separation: causes of many MLOps problems

● Development environment vs. production environment
● Batch pipeline vs. streaming pipeline
● Development vs. monitoring

30

Batch prediction vs. online prediction

31

● Batch prediction
○ Generate predictions periodically, before requests arrive
○ Predictions are stored (e.g. SQL tables, CSV files) and retrieved when requests arrive

● Online prediction
○ Generate predictions after requests arrive
○ Predictions are returned as responses

⚠ Misnomer ⚠
● Both can do one or more samples (batch) at a time
● If you do compute on the cloud, then both are technically

“online” - over the Internet

Batch prediction vs. online prediction

32

● Batch prediction
○ Generate predictions periodically before requests arrive
○ Predictions are stored (e.g. SQL tables) and retrieved when requests arrive
○ Asynch

● Online prediction
○ Generate predictions after requests arrive
○ Predictions are returned as responses
○ Sync when using requests like REST / RPC

■ HTTP prediction
○ Async [with low latency) with real-time transports like Kafka / Kinesis

■ Streaming prediction

Batch prediction vs. online prediction

33

● Batch prediction
○ Generate predictions periodically before requests arrive
○ Predictions are stored (e.g. SQL tables) and retrieved when requests arrive
○ Asynch

● Online prediction
○ Generate predictions after requests arrive
○ Predictions are returned as responses
○ Sync when using requests like REST / RPC

■ HTTP prediction
○ Async [with low latency) with real-time transports like Kafka / Kinesis

■ Streaming prediction

Offered by
major cloud
providers

Still
challenging

Online prediction

● Predictions are generated and returned as soon as requests for these
predictions arrive (on-demand prediction).

● Traditionally requests are sent to the prediction service via RESTful APIs
● It is also known as synchronous prediction (predictions are generated in

synchronization with requests) when prediction requests are sent via HTTP
requests.

34

Batch prediction

● Predictions are generated periodically or whenever triggered.
● The predictions are stored somewhere, such as in SQL tables or an

in-memory database, and retrieved as needed.
● Also known as asynchronous prediction: predictions are generated

asynchronously with requests.

35

Streaming prediction

36

37

Batch prediction (async) Online prediction (generally sync)

Frequency Periodical (e.g. every 4 hours) As soon as requests come

Useful for Processing accumulated data when you don't need
immediate results (e.g. recommendation systems)

When predictions are needed as soon as data sample is
generated (e.g. fraud detection)

Optimized High throughput Low latency

Input space Finite: need to know how many predictions to generate Can be infinite

Examples ● TripAdvisor hotel ranking
● Netflix recommendations

● Google Assistant
speech recognition

● Twitter feed

Hybrid: batch & online prediction

● Online prediction is default, but common queries are precomputed and
stored

●
○ Restaurant recommendations use batch predictions
○ Within each restaurant, item recommendations use online predictions

●
○ Title recommendations use batch predictions
○ Row orders use online predictions

38

3. Model Serving Considerations

39

Security and correctness

The runtime is responsible for authenticating the user identity, and authorizing
their requests. Things to check are:

● whether a specific user has authorized access to the models they want to run
● whether the names and the values of parameters passed correspond to the

model’s specification
● whether those parameters and their values are currently available to the

user

40

Ease of deployment

● The model should be updated with minimal effort and without affecting the
entire application.

● Different deployment methods require different update strategies:
○ Web service: replace model file and restart service
○ Virtual machine or container: replace instances with new image
○ Model streaming: stream new version of model and related components

● Model streaming requires stateful application that changes state when new
version is received.

41

Guarantees of model validity

● A runtime should ensure the model, the feature extractor, and other
components are valid and in sync.

● A model should be deployed with four assets: an end-to-end set, a
confidence test set, a performance metric, and its acceptable range.

● A model should not be served (or stopped if running) if:
○ any end-to-end test example is scored incorrectly, or
○ the performance metric on the confidence test set is out of range.

42

Ease of recovery

● A runtime should enable easy recovery from errors by rolling back to
previous versions.

● The recovery process should be similar and simple as the deployment
process, except using the previous working version instead of the new
model.

43

Avoidance of training/serving skew

● Training/Serving Skew: when features used for training and production are
different

● Causes: using two different codebases for feature extraction (e.g. for
efficiency or compatibility reasons)

● Consequences: suboptimal or incorrect model performance
● Solutions:

○ Use the same feature extraction code for both training and production
○ Wrap the feature extraction object into a separate web service
○ Log feature values generated in production and use them for training

44

Avoidance of hidden feedback loops

● Hidden Feedback Loops: when model output influences model input
● Causes: using model output as feature for another model or for the same

model
● Consequences: skewed data and biased learning
● Solutions:

○ Avoid circular dependencies between models
○ Use held-out examples that are not affected by the model output
○ Show all held-out examples to the user and use their feedback for training

45

Being ready for errors

Errors are inevitable in any software. In machine-learning-based software, errors
are an integral part of the solution: no model is perfect. Because we cannot fix all
errors, the only option is to embrace them.

Embracing errors means designing the software system in such a way that when
an error happens, the system continues operating normally.

46

Being ready for errors

We must accept and embrace three “cannots”:
● We cannot always explain why an error happened
● We cannot reliably predict when it will happen
● We cannot always know how to fix a specific error

47

To deal with errors, you should:
● Have a strategy that minimizes the impact of the system mistakes on users.
● Limit the user's exposure to the model and monitor the user's engagement

with the system.
● Be very careful in critical scenarios where the system acts on the user's

behalf.

Dealing with errors

48

Dealing with errors

Some techniques that you can use are:
● Saying "I don't know" instead of giving a random answer.
● Calculating the cost of the error and hiding it if it is too high.
● Training a second model to detect when the first is likely to make an error.
● Optimizing the model for the type of error that you want to avoid.
● Presenting multiple options when the confidence is low.
● Measuring the number of errors and the user's tolerance level.

49

Dealing with errors

Some techniques that you can use are:
● Allowing the user to report errors and explaining how they will be fixed.
● Logging and analyzing suspicious interactions offline.
● Giving the user an option to undo an action recommended by the system.
● Sending an alert and putting an action on hold if the model predicts

something unreasonable.
● Implementing a fallback strategy using a simpler model or a heuristic if the

model prediction is rejected.
● Validating the output of the fallback strategy and sending an error message

if it is also rejected.

50

Dealing with errors

51Real-world model serving flowchart.

Being ready for and dealing with change

● Machine learning systems can change over time due to various factors, such
as concept drift or data imbalance.

● These changes can affect the system's quality and predictions, and the user's
perception and satisfaction.

● Users may have different preferences and interests, and may get used to
certain results or behaviors.

● To avoid user frustration or confusion, you should:
○ Educate the user about the changes and what to expect from the new model.
○ Give the user time to adapt to the new model.
○ Use a gradual or parallel approach to transition from the old model to the new model.

52

Being ready for and dealing with human nature

● Avoid Confusion: The system should be easy to use and understand for the user,
without expecting them to have any knowledge of machine learning and AI, and
without showing them unexpected errors.

● Manage Expectations: Some users may have unrealistic expectations of machine
learning systems because of advertisements that show them as “intelligent” or
because of their previous experience with similar systems that seemed “very
intelligent” to them.

● Gain Trust: Some users may distrust machine learning systems because of their past
experience with them and may try to test your system’s abilities with simple queries or
commands. You should make sure that your system can handle such tests and gain the
user’s confidence quickly.

53

Being ready for and dealing with human nature

● Manage User Fatigue: User fatigue can occur when the system interrupts the user too
often or makes inappropriate decisions on their behalf. You should balance the level of
automation and user control and use a model to detect sensitive information that
should not be shared without user consent.

● Beware of the Creep Factor: Creep factor is when the user feels uneasy about the
system’s ability to predict their personal details. You should avoid making the system
seem too intrusive or authoritative.

54

Machine Learning Systems Design
Deployment and Monitoring
Next Lecture: Model Serving

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

