
Machine Learning Systems Design
Deployment and Monitoring
Lecture 19: Model Serving

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. Stream Serving
2. Batch vs Online Serving
3. Model Serving Considerations
4. ML Infrastructure
5. Resource Management
6. ML Platforms

2

4. ML Infrastructure

3

What does infrastructure mean?

4

ML systems are complex

5

● More components
○ A request might jump 20-30 hops before response
○ A problem occurs, but where? Containers

Schedulers

Microservices

Load
balancers

Lambda
functions

Mesh
routing

Serverless

More complex systems, better infrastructure needed

6

Automate
boilerplate code Reuse/share code

Reduce surface
area for bugs

7

● Infrastructure: the set of fundamental facilities and systems that support the
sustainable functionality of households and firms.

● ML infrastructure: the set of fundamental facilities that support the
development and maintenance of ML systems.

Every company’s infrastructure needs are different

8

Every company’s infrastructure needs are different

9

63K requests/sec
234M requests/hr

Every company’s infrastructure needs are different

10

63K requests/sec
234M requests/hr

● GB - TBs of data daily
● 10s - 100s data scientists
● 3+ models

Every company’s infrastructure needs are different

11

Vast majority of apps
(reasonable scale)

63K requests/sec
234M requests/hr

12n=66 | claypot.ai

Infrastructure Layers

13

Infrastructure Layers

14

1

2

3

4

Storage

● Where data is collected and stored
● Simplest form: HDD, SSD
● More complex forms: data lake, data warehouse
● Examples: S3, Redshift, Snowflake, BigQuery

15

See Data Lecture
slides

Storage: heavily commoditized

● Most companies use storage provided by other companies (e.g. cloud)
● Storage has become so cheap that most companies just store everything

16

Compute layer: engine to execute your jobs

● Compute resources a company has access to
● Mechanism to determine how these resources can be used

17

Compute layer: engine to execute jobs

● Simplest form: a single CPU/GPU core
● Most common form: cloud compute

18

Compute unit

● Compute layer can be sliced into smaller compute units to be used
concurrently
○ A CPU core might support 2 concurrent threads, each thread is used as a compute unit to

execute its own job
○ Multiple CPUs can be joined to form a large compute unit to execute a large job

19

Compute unit

● Compute layer can be sliced into smaller compute units to be used
concurrently
○ A CPU core might support 2 concurrent threads, each thread is used as a compute unit to

execute its own job
○ Multiple CPUs can be joined to form a large compute unit to execute a large job

20

Unit: job Unit: pod
Wrapper around
container

Compute layer: how to execute jobs

1. Load data into memory
2. Perform operations on that data

a. Operations: add, subtract, multiply, convolution, etc.

21

To add arrays A and B
1. Load A & B into memory
2. Perform addition on A and B

Compute layer: how to execute jobs

1. Load data into memory
2. Perform operations on that data

a. Operations: add, subtract, multiply, convolution, etc.

22

To add arrays A and B
1. Load A & B into memory
2. Perform addition on A and B

If A & B don’t fit into memory, it’ll be
possible to do the ops without
out-of-memory algorithms

Compute layer: how to execute jobs

1. Load data into memory
2. Perform operations on that data

a. Operations: add, subtract, multiply, convolution, etc.

23

To add arrays A and B
1. Load A & B into memory
2. Perform addition on A and B

Important metrics of compute layer:
1. Memory
2. Speed of computing ops

Compute layer: memory

● Amount of memory
○ Straightforward
○ An instance with 8GB of memory is more expensive than an instance with 2GB of memory

24

Compute layer: memory

● Amount of memory
● I/O bandwidth: speed at which data can be loaded into memory

25

Compute layer: speed of ops

● Most common metric: FLOPS
○ Floating Point Operations Per Second

“A Cloud TPU v2 can perform up to 180 teraflops,
and the TPU v3 up to 420 teraflops.”

- Google, 2021

26

https://www.infoq.com/news/2021/06/cloud-tpu-vms-preview/

Compute layer: speed of ops

● Most common metric: FLOPS
● Contentious

○ What exactly is an ops?
■ If 2 ops are fused together, is it 1 or 2 ops?

○ Peak perf at 1 teraFLOPS doesn’t mean your app will run at 1 teraFLOPS

27

Compute layer: utilization

● Utilization = actual FLOPS / peak FLOPS

28

If peak 1 trillion FLOPS but job runs 300
billion FLOPS
-> utilization = 0.3

Compute layer: utilization

● Utilization = actual FLOPS / peak FLOPS
● Dependent on how fast data can be loaded into memory

29

Tensor Cores are very fast. So fast … that they are idle most of the time as they
are waiting for memory to arrive from global memory.

For example, during BERT Large training, which uses huge matrices — the
larger, the better for Tensor Cores — we have utilization of about 30%.

- Tim Dettmers, 2020

The higher,
the better

https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/

Compute layer: if not FLOPS, then what?

30

Compute layer: if not FLOPS, then what?

● How long it will take this compute unit to do common workloads
● MLPerf measure hardware on common ML tasks e.g.

○ Train a ResNet-50 model on the ImageNet dataset
○ Use a BERT-large model to generate predictions for the SQuAD dataset

31

https://mlcommons.org/en/inference-datacenter-11/

MLPerf is also
contentious

32

Compute layer: evaluation

● Memory
● Cores
● I/O bandwidth
● Cost

33

Public Cloud vs. Private Data Centers

● Like storage, compute is largely commoditized

34
2020 – The Year that Cloud Service Revenues Finally Dwarfed Enterprise Spending on Data Centers | Synergy Research Group

https://www.srgresearch.com/articles/2020-the-year-that-cloud-service-revenues-finally-dwarfed-enterprise-spending-on-data-centers

Benefits of cloud

● Easy to get started
● Appealing to variable-sized workloads

○ Private: would need 100 machines upfront, most will be idle most of the time
○ Cloud: pay for 100 machines only when needed

35

Benefits of cloud

● Easy to get started
● Appealing to variable-sized workloads

○ Private: would need 100 machines upfront, most will be idle most of the time
○ Cloud: pay for 100 machines only when needed

36

Autoscaling!

Drawbacks of cloud: cost

● Cloud spending: ~50% cost of revenue

37
The Cost of Cloud, a Trillion Dollar Paradox | Andreessen Horowitz (2021)

https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/

Drawbacks of cloud: cost

“Across 50 of the top public software companies currently utilizing cloud
infrastructure, an estimated $100B of market value is being lost … due to cloud
impact on margins — relative to running the infrastructure themselves.”

The Cost of Cloud, a Trillion Dollar Paradox | Andreessen Horowitz (2021)

38

https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/

Cloud repatriation

● Process of moving workloads from cloud to private data centers

39

A large chunk
due to cloud
repatriation

Multicloud strategy

● To optimize cost
● To avoid cloud vendor lock-in

40

“81% of respondents said they are working with
two or more providers”

- Gartner (2019)

https://www.gartner.com/smarterwithgartner/why-organizations-choose-a-multicloud-strategy

5. Resource Management

41

Resource management

42

Pre-cloud Cloud

Resources Finite Practically infinite

Implication More resources for an app =
less resources for other apps

More resources for an app
don’t have to affect other apps

Goal Utilization Utilization + cost efficiency

Resource management

43

Pre-cloud Cloud

Resources Finite Practically infinite

Implication More resources for an app =
less resources for other apps

More resources for an app
don’t have to affect other apps

Goal Utilization Utilization + cost efficiency

Simplify the
allocation
challenge

Resource management

44

Pre-cloud Cloud

Resources Finite Practically infinite

Implication More resources for an app =
less resources for other apps

More resources for an app
don’t have to affect other apps

Goal Utilization Utilization + cost efficiency

OK to use more
resources if help
engineers to be
more productive

ML workloads

● Repetitive
○ Batch prediction
○ Periodical retraining
○ Periodical analytics

● Dependencies
○ E.g. train depends on featurize

45

ML workloads

● Repetitive
○ Batch prediction
○ Periodical retraining
○ Periodical analytics

● Dependencies
○ E.g. train depends on featurize

46

Cron: extremely simple

● Schedule jobs to run at fixed time intervals
● Report the results

47

Cron: extremely simple

● Schedule jobs to run at fixed time intervals
● Report the results

48

Cron can’t
handle this

Scheduler

● Schedulers are cron programs that can
handle dependencies

49

Scheduler

● Most schedulers require you to specify your
workloads as DAGs

50

This is a DAG
● Directed
● Acyclic
● Graph

Scheduler

● Can handle event-based & time based triggers
○ Run job A whenever X happens

● If a job fails, specify how many times to retry before giving up
● Jobs can be queued, prioritized, and allocated resources

○ If a job requires 8GB of memory and 2 CPUs, scheduler needs to find an instance with 8GB of
memory and 2 CPUs

51

Scheduler: SLURM example

#!/bin/bash
#SBATCH -J JobName
#SBATCH --time=11:00:00 # When to start the job
#SBATCH --mem-per-cpu=4096 # Memory, in MB, to be allocated per CPU
#SBATCH --cpus-per-task=4 # Number of cores per task

52

Scheduler: optimize utilization

● Schedulers aware of:
○ resources available
○ resources needed for each job

● Sophisticated schedulers (e.g. Google Borg) can reclaim unused resources
○ If I estimate that my job needs 8GB and it only uses 4GB, reclaim 4GB for other jobs

53

Scheduler challenge

● General purpose schedulers are extremely hard to design
● Need to handle any workload with any number of concurrent machines
● If scheduler is down, every workflow this scheduler touches will also be

down

54

Scheduler to Orchestrator

● Scheduler: when to run jobs
● Orchestrator: where to run jobs

55

Scheduler to Orchestrator

● Scheduler: when to run jobs
○ Handle jobs, queues, user-level quotas, etc.

● Orchestrator: where to run jobs
○ Handle containers, instances, clusters, replication, etc.
○ Provision: allocate more instances to the instance pool as needed

56

Scheduler to Orchestrator

● Scheduler: when to run jobs
○ Handle jobs, queues, user-level quotas, etc.
○ Typically used for periodical jobs like batch jobs

● Orchestrator: where to run jobs
○ Handle containers, instances, clusters, replication, etc.
○ Provision: allocate more instances to the instance pool as needed
○ Typically used for long-running jobs like services

57

Scheduler & orchestrator

● Schedulers usually have some orchestrating capacity and vice versa
○ Schedulers like SLURM and Google’s Borg have some orchestrating capacity
○ Orchestrators like HashiCorp Nomad and K8s come with some scheduling capacity

● Often, schedulers are run on top of orchestrators
○ Run Spark’s job scheduler on top of K8s
○ Run AWS Batch scheduler on top of EKS

58

Data science workflow management

59

Data science workflow

● Can be defined using:
○ Code (Python)
○ Configuration files (YAML)

● Examples: Airflow, Argo, KubeFlow, Metaflow

60

Airflow

● 1st gen data science workflow
management

● Champion of
“configuration-as-code”

● Wide range of operators to expand
capabilities

61

Airflow: cons

● Monolithic
○ The entire workflow as a container

● Non-parameterized
○ E.g. need to define another workflow if

you want to change learning rate

● Static DAG
○ Can’t handle workloads with unknown

number of records

62

Argo: next gen

● Created to address Airflow’s problems
○ Containerized
○ Fully parameterized
○ Dynamic DAG

63

Argo: cons

● YAML-based configs
○ Can get very messy

● Only run on K8s clusters
○ Can’t easily test in dev environment

64

Kubeflow & Metaflow: same code in dev & prod

● Allows data scientists to use the same code in both dev and prod
environments

65

Kubeflow: more mature but more boilerplate

66

Metaflow: less mature but cleaner API

67

● Run notebook code in cloud with
a line of code (@batch)
○ Run experiments locally
○ Once ready, run code on AWS Batch

● Can run different steps of the
same workflow in different envs

6. ML Platform

68

Model platform: story time

1. Anna started working on recsys at company X
2. To deploy recsys, Anna’s team need to build tool like model deployment,

model store, feature store, etc.
3. Other teams at X started deploying models and needed to build the same

tools
4. X decided to have a centralized platform to serve multiple ML use cases

69

ML Platform

ML platform: key components

● Model deployment
● Model store
● Feature store

70

Deployment: online | batch prediction

● Deployment service:
○ Package your model & dependencies
○ Push the package to production
○ Expose an endpoint for prediction

71

See previous
lectures

Deployment: online | batch prediction

● Deployment service:
○ Package your model & dependencies
○ Push the package to production
○ Expose an endpoint for prediction

● The most common MLOps tool
○ Cloud providers: SageMaker (AWS), Vertex AI (GCP), AzureML (Azure), etc.
○ Independent: MLflow Models, Seldon, Cortex, Ray Serve, etc.

72

Deployment: online | batch prediction

● Deployment service:
○ Package your model & dependencies
○ Push the package to production
○ Expose an endpoint for prediction

● The most common MLOps tool
● Not all can do batch + online prediction well

○ e.g. some companies use Seldon for online prediction, but Databricks for batch

73

Deployment service: model quality challenge

● How to ensure a model’s quality pre- and during deployment?
○ Traditional code: CI/CD, PR review
○ ML: ???, ???

74

Model store

● Simplest form: store all models in blob storage like S3
● Problem:

○ When something happens, how to figure out:
■ Who/which team is responsible for this model?
■ If the correct model binary was deployed?
■ If the features used are correct?
■ If the code is up-to-date?
■ If something happened with the data pipeline?

75

Model store: artifact tracking

● Track all metadata necessary to debug
a model later

● Severely underestimated

76

Model store: artifact tracking at Stitch Fix

77

Feature store: key challenges

1. Feature management
a. Multiple models might share features, e.g. churn prediction & conversion prediction
b. How to allow different teams to find & use high-value features discovered by other teams?

78

Feature store: key challenges

1. Feature management
2. Feature consistency

a. During training, features might be written in Python
b. During deployment, features might be written in Java
c. How to ensure consistency between different feature pipelines?

79

Feature store: key challenges

1. Feature management
2. Feature consistency
3. Feature computation

a. It might be expensive to compute the same feature multiple times for different models
b. How to store computed features so that other models can use?

80

Feature store: key challenges

1. Feature management
2. Feature consistency
3. Feature computation

81

Feature catalog

Data warehouse

Other ML platform components

● Monitoring (ML & ops metrics)
● Experimentation platform
● Measurement (business metrics)

82

Evaluate MLOps tools

1. Does it work with your cloud provider?
2. Open-source or managed service?
3. Data security requirements

83

Machine Learning Systems Design
Deployment and Monitoring
Next Lecture: Model Maintenance

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

