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Agenda
1. Stream Serving
2. Batch vs Online Serving
3. Model Serving Considerations
4. ML Infrastructure 
5. Resource Management
6. ML Platforms
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4. ML Infrastructure
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What does infrastructure mean?
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ML systems are complex

5

● More components
○ A request might jump 20-30 hops before response
○ A problem occurs, but where? Containers

Schedulers

Microservices

Load 
balancers

Lambda 
functions

Mesh 
routing

Serverless



More complex systems, better infrastructure needed
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Automate 
boilerplate code Reuse/share code

Reduce surface 
area for bugs
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● Infrastructure: the set of fundamental facilities and systems that support the 
sustainable functionality of households and firms.

● ML infrastructure: the set of fundamental facilities that support the 
development and maintenance of ML systems.



Every company’s infrastructure needs are different
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Every company’s infrastructure needs are different
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63K requests/sec
234M requests/hr



Every company’s infrastructure needs are different
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63K requests/sec
234M requests/hr

● GB - TBs of data daily
● 10s - 100s data scientists
● 3+ models



Every company’s infrastructure needs are different
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Vast majority of apps 
(reasonable scale)

63K requests/sec
234M requests/hr



12n=66 | claypot.ai



Infrastructure Layers
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Infrastructure Layers
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3
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Storage

● Where data is collected and stored
● Simplest form: HDD, SSD
● More complex forms: data lake, data warehouse
● Examples: S3, Redshift, Snowflake, BigQuery
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See Data Lecture
slides



Storage: heavily commoditized

● Most companies use storage provided by other companies (e.g. cloud)
● Storage has become so cheap that most companies just store everything
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Compute layer: engine to execute your jobs

● Compute resources a company has access to
● Mechanism to determine how these resources can be used
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Compute layer: engine to execute jobs

● Simplest form: a single CPU/GPU core
● Most common form: cloud compute
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Compute unit

● Compute layer can be sliced into smaller compute units to be used 
concurrently
○ A CPU core might support 2 concurrent threads, each thread is used as a compute unit to 

execute its own job
○ Multiple CPUs can be joined to form a large compute unit to execute a large job
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Compute unit

● Compute layer can be sliced into smaller compute units to be used 
concurrently
○ A CPU core might support 2 concurrent threads, each thread is used as a compute unit to 

execute its own job
○ Multiple CPUs can be joined to form a large compute unit to execute a large job
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Unit: job Unit: pod
Wrapper around 
container



Compute layer: how to execute jobs

1. Load data into memory
2. Perform operations on that data

a. Operations: add, subtract, multiply, convolution, etc.

21

To add arrays A and B
1. Load A & B into memory
2. Perform addition on A and B



Compute layer: how to execute jobs

1. Load data into memory
2. Perform operations on that data

a. Operations: add, subtract, multiply, convolution, etc.
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To add arrays A and B
1. Load A & B into memory
2. Perform addition on A and B

If A & B don’t fit into memory, it’ll be 
possible to do the ops without 
out-of-memory algorithms



Compute layer: how to execute jobs

1. Load data into memory
2. Perform operations on that data

a. Operations: add, subtract, multiply, convolution, etc.
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To add arrays A and B
1. Load A & B into memory
2. Perform addition on A and B

Important metrics of compute layer:
1. Memory
2. Speed of computing ops



Compute layer: memory

● Amount of memory
○ Straightforward
○ An instance with 8GB of memory is more expensive than an instance with 2GB of memory
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Compute layer: memory

● Amount of memory
● I/O bandwidth: speed at which data can be loaded into memory
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Compute layer: speed of ops

● Most common metric: FLOPS
○ Floating Point Operations Per Second

“A Cloud TPU v2 can perform up to 180 teraflops,
and the TPU v3 up to 420 teraflops.”

- Google, 2021
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https://www.infoq.com/news/2021/06/cloud-tpu-vms-preview/


Compute layer: speed of ops

● Most common metric: FLOPS
● Contentious

○ What exactly is an ops?
■ If 2 ops are fused together, is it 1 or 2 ops?

○ Peak perf at 1 teraFLOPS doesn’t mean your app will run at 1 teraFLOPS
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Compute layer: utilization

● Utilization = actual FLOPS / peak FLOPS
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If peak 1 trillion FLOPS but job runs 300 
billion FLOPS
-> utilization = 0.3



Compute layer: utilization

● Utilization = actual FLOPS / peak FLOPS
● Dependent on how fast data can be loaded into memory
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Tensor Cores are very fast. So fast … that they are idle most of the time as they 
are waiting for memory to arrive from global memory.

For example, during BERT Large training, which uses huge matrices — the 
larger, the better for Tensor Cores — we have utilization of about 30%.

-  Tim Dettmers, 2020

The higher, 
the better

https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/


Compute layer: if not FLOPS, then what? 
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Compute layer: if not FLOPS, then what? 

● How long it will take this compute unit to do common workloads
● MLPerf measure hardware on common ML tasks e.g.

○ Train a ResNet-50 model on the ImageNet dataset
○ Use a BERT-large model to generate predictions for the SQuAD dataset
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https://mlcommons.org/en/inference-datacenter-11/


MLPerf is also 
contentious
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Compute layer: evaluation

● Memory
● Cores
● I/O bandwidth
● Cost
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Public Cloud vs. Private Data Centers

● Like storage, compute is largely commoditized

34
2020 – The Year that Cloud Service Revenues Finally Dwarfed Enterprise Spending on Data Centers | Synergy Research Group 

https://www.srgresearch.com/articles/2020-the-year-that-cloud-service-revenues-finally-dwarfed-enterprise-spending-on-data-centers


Benefits of cloud

● Easy to get started
● Appealing to variable-sized workloads

○ Private: would need 100 machines upfront, most will be idle most of the time
○ Cloud: pay for 100 machines only when needed
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Autoscaling!



Drawbacks of cloud: cost

● Cloud spending: ~50% cost of revenue

37
The Cost of Cloud, a Trillion Dollar Paradox | Andreessen Horowitz (2021) 

https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/


Drawbacks of cloud: cost

“Across 50 of the top public software companies currently utilizing cloud 
infrastructure, an estimated $100B of market value is being lost … due to cloud 
impact on margins — relative to running the infrastructure themselves.”

The Cost of Cloud, a Trillion Dollar Paradox | Andreessen Horowitz (2021) 
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https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/


Cloud repatriation

● Process of moving workloads from cloud to private data centers

39

A large chunk 
due to cloud 
repatriation



Multicloud strategy

● To optimize cost
● To avoid cloud vendor lock-in
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“81% of respondents said they are working with 
two or more providers”

- Gartner (2019)

https://www.gartner.com/smarterwithgartner/why-organizations-choose-a-multicloud-strategy


5. Resource Management
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Resource management

42

Pre-cloud Cloud

Resources Finite Practically infinite

Implication More resources for an app = 
less resources for other apps

More resources for an app 
don’t have to affect other apps

Goal Utilization Utilization + cost efficiency



Resource management
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Pre-cloud Cloud

Resources Finite Practically infinite

Implication More resources for an app = 
less resources for other apps

More resources for an app 
don’t have to affect other apps

Goal Utilization Utilization + cost efficiency

Simplify the 
allocation 
challenge 



Resource management
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Pre-cloud Cloud

Resources Finite Practically infinite

Implication More resources for an app = 
less resources for other apps

More resources for an app 
don’t have to affect other apps

Goal Utilization Utilization + cost efficiency

OK to use more 
resources if help 
engineers to be 
more productive



ML workloads

● Repetitive
○ Batch prediction
○ Periodical retraining
○ Periodical analytics 

● Dependencies
○ E.g. train depends on featurize
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Cron: extremely simple

● Schedule jobs to run at fixed time intervals
● Report the results
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Cron: extremely simple

● Schedule jobs to run at fixed time intervals
● Report the results
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Cron can’t 
handle this



Scheduler

● Schedulers are cron programs that can 
handle dependencies
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Scheduler

● Most schedulers require you to specify your 
workloads as DAGs
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This is a DAG
● Directed
● Acyclic
● Graph



Scheduler

● Can handle event-based & time based triggers
○ Run job A whenever X happens

● If a job fails, specify how many times to retry before giving up
● Jobs can be queued, prioritized, and allocated resources

○ If a job requires 8GB of memory and 2 CPUs, scheduler needs to find an instance with 8GB of 
memory and 2 CPUs
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Scheduler: SLURM example

#!/bin/bash
#SBATCH -J JobName
#SBATCH --time=11:00:00 # When to start the job
#SBATCH --mem-per-cpu=4096 # Memory, in MB, to be allocated per CPU
#SBATCH --cpus-per-task=4 # Number of cores per task
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Scheduler: optimize utilization

● Schedulers aware of:
○ resources available
○ resources needed for each job

● Sophisticated schedulers (e.g. Google Borg) can reclaim unused resources
○ If I estimate that my job needs 8GB and it only uses 4GB, reclaim 4GB for other jobs
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Scheduler challenge

● General purpose schedulers are extremely hard to design
● Need to handle any workload with any number of concurrent machines
● If scheduler is down, every workflow this scheduler touches will also be 

down
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Scheduler to Orchestrator

● Scheduler: when to run jobs
● Orchestrator: where to run jobs
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Scheduler to Orchestrator

● Scheduler: when to run jobs
○ Handle jobs, queues, user-level quotas, etc.

● Orchestrator: where to run jobs
○ Handle containers, instances, clusters, replication, etc.
○ Provision: allocate more instances to the instance pool as needed
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Scheduler to Orchestrator

● Scheduler: when to run jobs
○ Handle jobs, queues, user-level quotas, etc.
○ Typically used for periodical jobs like batch jobs

● Orchestrator: where to run jobs
○ Handle containers, instances, clusters, replication, etc.
○ Provision: allocate more instances to the instance pool as needed
○ Typically used for long-running jobs like services
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Scheduler & orchestrator

● Schedulers usually have some orchestrating capacity and vice versa
○ Schedulers like SLURM and Google’s Borg have some orchestrating capacity
○ Orchestrators like HashiCorp Nomad and K8s come with some scheduling capacity

● Often, schedulers are run on top of orchestrators
○ Run Spark’s job scheduler on top of K8s
○ Run AWS Batch scheduler on top of EKS
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Data science workflow management
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Data science workflow

● Can be defined using:
○ Code (Python)
○ Configuration files (YAML)

● Examples: Airflow, Argo, KubeFlow, Metaflow
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Airflow

● 1st gen data science workflow 
management

● Champion of 
“configuration-as-code”

● Wide range of operators to expand 
capabilities
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Airflow: cons

● Monolithic
○ The entire workflow as a container

● Non-parameterized
○ E.g. need to define another workflow if 

you want to change learning rate

● Static DAG
○ Can’t handle workloads with unknown 

number of records
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Argo: next gen

● Created to address Airflow’s problems
○ Containerized
○ Fully parameterized
○ Dynamic DAG
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Argo: cons

● YAML-based configs
○ Can get very messy

● Only run on K8s clusters
○ Can’t easily test in dev environment
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Kubeflow & Metaflow: same code in dev & prod

● Allows data scientists to use the same code in both dev and prod 
environments
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Kubeflow: more mature but more boilerplate
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Metaflow: less mature but cleaner API
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● Run notebook code in cloud with 
a line of code (@batch)
○ Run experiments locally
○ Once ready, run code on AWS Batch

● Can run different steps of the 
same workflow in different envs



6. ML Platform
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Model platform: story time

1. Anna started working on recsys at company X
2. To deploy recsys, Anna’s team need to build tool like model deployment, 

model store, feature store, etc.
3. Other teams at X started deploying models and needed to build the same 

tools
4. X decided to have a centralized platform to serve multiple ML use cases
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ML Platform



ML platform: key components

● Model deployment
● Model store
● Feature store
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Deployment: online | batch prediction 

● Deployment service:
○ Package your model & dependencies
○ Push the package to production
○ Expose an endpoint for prediction

71

See previous 
lectures



Deployment: online | batch prediction 

● Deployment service:
○ Package your model & dependencies
○ Push the package to production
○ Expose an endpoint for prediction

● The most common MLOps tool
○ Cloud providers: SageMaker (AWS), Vertex AI (GCP), AzureML (Azure), etc.
○ Independent:  MLflow Models, Seldon, Cortex, Ray Serve, etc.
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Deployment: online | batch prediction 

● Deployment service:
○ Package your model & dependencies
○ Push the package to production
○ Expose an endpoint for prediction

● The most common MLOps tool
● Not all can do batch + online prediction well

○ e.g. some companies use Seldon for online prediction, but Databricks for batch
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Deployment service: model quality challenge

● How to ensure a model’s quality pre- and during deployment?
○ Traditional code: CI/CD, PR review
○ ML: ???, ???
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Model store

● Simplest form: store all models in blob storage like S3
● Problem:

○ When something happens, how to figure out:
■ Who/which team is responsible for this model?
■ If the correct model binary was deployed?
■ If the features used are correct?
■ If the code is up-to-date?
■ If something happened with the data pipeline?
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Model store: artifact tracking

● Track all metadata necessary to debug 
a model later

● Severely underestimated
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Model store: artifact tracking at Stitch Fix
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Feature store: key challenges

1. Feature management
a. Multiple models might share features, e.g. churn prediction & conversion prediction
b. How to allow different teams to find & use high-value features discovered by other teams?

78



Feature store: key challenges

1. Feature management
2. Feature consistency

a. During training, features might be written in Python
b. During deployment, features might be written in Java
c. How to ensure consistency between different feature pipelines?
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Feature store: key challenges

1. Feature management
2. Feature consistency
3. Feature computation

a. It might be expensive to compute the same feature multiple times for different models
b. How to store computed features so that other models can use?

80



Feature store: key challenges

1. Feature management
2. Feature consistency
3. Feature computation
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Feature catalog

Data warehouse



Other ML platform components

● Monitoring (ML & ops metrics)
● Experimentation platform
● Measurement (business metrics)
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Evaluate MLOps tools

1. Does it work with your cloud provider?
2. Open-source or managed service?
3. Data security requirements
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