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Agenda
1. Natural Labels & Feedback Loops
2. Causes of ML System Failures
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1. Natural Labels & Feedback Loops
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Natural labels

● The model’s predictions can be automatically evaluated or partially 
evaluated by the system.

● Examples:
○ ETA
○ Ride demand prediction
○ Stock price prediction
○ Ads CTR
○ Recommender system
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Natural labels

● You can engineer a task to have natural labels
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Natural labels: surprisingly common
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⚠ Biases ⚠
● Small sample size
● Companies might only 

use ML for tasks with 
natural labels

Claypot AI’s real-time ML survey (2022)

https://forms.gle/TxHm36cJNNzR8kWX8


Delayed labels
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Delayed labels

● Short feedback loop: minutes -> hours
○ Reddit / Twitter / TikTok’s recommender systems

● Long feedback loop: weeks -> months
○ Stitch Fix’s recommender systems
○ Fraud detection

Time

Prediction 
is served

Feedback 
is provided

Feedback 
loop length
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Claypot AI’s real-time ML survey (2022)

https://forms.gle/TxHm36cJNNzR8kWX8


⚠ Labels are often assumed ⚠
● Recommendation:

○ Click -> good rec
○ After X minutes, no click -> bad rec
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Speed vs. accuracy 
tradeoff

● Recommendation:
○ Click -> good rec
○ After X minutes, no click -> bad rec

Too short Too long

False 
negatives

Slow 
feedback



⚠ Labels are often assumed ⚠
● Recommendation:

○ Click -> good rec
○ After X minutes, no click -> bad rec
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Too short Too long

False 
negatives

Slow 
feedback

Addressing Delayed Feedback for Continuous Training with Neural Networks in CTR prediction (Ktena et al., 2019)

https://arxiv.org/abs/1907.06558


2. Causes of ML System Failures
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Amazon scraps secret AI recruiting tool that showed bias against women (Reuters, 2018)

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
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“Guests complained their robot 
room assistants thought snoring 

sounds were commands and 
would wake them up 

repeatedly during the night.”

https://www.hotelmanagement.net/tech/japan-s-henn-na-hotel-fires-half-its-robot-workforce 

https://www.hotelmanagement.net/tech/japan-s-henn-na-hotel-fires-half-its-robot-workforce


What is an ML failure?

A failure happens when one or more expectations of the system is violated.

Two types of expectations:

● Operational metrics: e.g. average latency, throughput, uptime
● ML metrics: e.g. accuracy, F1, BLEU score
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What is an ML failure?

A failure happens when one or more expectations of the system is violated

● Traditional software: mostly operational metrics
● ML systems: operational + ML metrics

○ Ops: returns an English translation within 100ms latency on average
○ ML: BLEU score of 55 (out of 100)
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ML system failures

● If you enter a sentence and get no translation back -> ops failure
● If one translation is incorrect -> ML failure?
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ML system failures

● If you enter a sentence and get no translation back -> ops failure
● If one translation is incorrect -> ML failure?
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● Not necessarily: expected BLEU score < 100
● ML failure if translations are consistently incorrect
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Ops failures ML failures

Visible
● 404, timeout, segfault, OOM, etc.

Often invisible



Causes of ops failures (software system failures)

● Dependency failures
● Deployment failures
● Hardware failures
● Network failure: downtime / crash
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Causes of ops failures (software system failures)

● Dependency failures
● Deployment failures
● Hardware failures
● Network failure: downtime / crash
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60 / 96 ML systems failures are non-ML failures
(Papasian & Underwood, 2020)

As tooling & best practices around ML production mature, 
there will be less surface for software failures

https://www.youtube.com/watch?v=hBMHohkRgAA


ML-specific failures (during/post deployment)

1. Production data differing from training data
2. Edge cases
3. Degenerate feedback loops
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We’ve already covered problems 
pre-deployment in previous lectures!



Production data differing from training data

● Train-serving skew:
○ Model performing well during development but poorly after production

● Data distribution shifts
○ Model performing well when first deployed, but poorly over time
○ ⚠ What looks like data shifts might be caused by human errors ⚠ 
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Production data differing from training data

● Train-serving skew:
○ Model performing well during development but poorly after production

● Data distribution shifts
○ Model performing well when first deployed, but poorly over time
○ ⚠ What looks like data shifts might be caused by human errors ⚠ 

24

Common & crucial. 
Will go into detail!



Edge cases

● Self-driving car (yearly)
○ Safely: 99.99%
○ Fatal accidents: 0.01%
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Zoom poll: Would you 
use this car?



Edge case vs. outlier

● Outliers
○ Refer to inputs
○ Options to ignore/remove

● Edge cases
○ Refer to outputs
○ Can’t ignore/remove
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Degenerate feedback loops

● When predictions influence the feedback, which is then used to extract 
labels to train the next iteration of the model

● Common in tasks with natural labels
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Degenerate feedback loops: recsys

● Originally, A is ranked marginally higher than B -> model recommends A
● After a while, A is ranked much higher than B
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Degenerate feedback loops: recsys

● Originally, A is ranked marginally higher than B -> model recommends A
● After a while, A is ranked much higher than B
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Over time, 
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become more 
homogenous



Degenerate feedback loops: resume screening

● Originally, model thinks X is a good feature
● Model only picks resumes with X
● Hiring managers only see resumes with X, so only people with X are hired
● Model confirms that X is good
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Replace X with:

● Has a name that is typically used for males
● Went to Stanford
● Worked at Google



Degenerate feedback loops: resume screening

● Originally, model thinks X is a good feature
● Model only picks resumes with X
● Hiring managers only see resumes with X, so only people with X are hired
● Model confirms that X is good
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Tracking feature importance might help!



Detecting degenerate feedback loops

Only arise once models are in production -> hard to detect during training
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Degenerate feedback loops: detect

● Average Rec Popularity (ARP)
○ Average popularity of the 

recommended items 

● Average Percentage of Long Tail 
Items (APLT)
○ average % of long tail items being  

recommended

● Hit rate against popularity
○ Accuracy based on recommended 

items’ popularity buckets
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Beyond NDCG: behavioral testing of recommender systems with RecList (Chia et al., 2021)

https://arxiv.org/abs/2111.09963


Degenerate feedback loops: mitigate

1. Randomization
2. Positional features
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Randomization

● Degenerate feedback loops increase output homogeneity
● Combat homogeneity by introducing randomness in predictions
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Randomization

● Degenerate feedback loops increase output homogeneity
● Combat homogeneity by introducing randomness in predictions
● Recsys: show users random items & use feedback to determine items’ quality
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Positional features

● If a prediction’s position affects its feedback in any way, encode it.
○ Numerical: e.g. position 1, 2, 3, …
○ Boolean: e.g. shows first position or not
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Positional features: naive
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ID Song Genre Year Artist User 1st 
Position

Click

1 Shallow Pop 2020 Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 Funk Overlord listenr32 False No

3 Beat It Rock 1989 Michael Jackson fancypants False No

4 In Bloom Rock 1991 Nirvana fancypants True Yes

5 Shallow Pop 2020 Lady Gaga listenr32 True Yes



Positional features: naive
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ID Song Genre Year Artist User 1st 
Position

Click

1 Shallow Pop 2020 Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 Funk Overlord listenr32 False No

3 Beat It Rock 1989 Michael Jackson fancypants False No

4 In Bloom Rock 1991 Nirvana fancypants True Yes

5 Shallow Pop 2020 Lady Gaga listenr32 True Yes

Doesn’t have this 
feature during 

inference?



Positional features: naive
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ID Song Genre Year Artist User 1st 
Position

Click

1 Shallow Pop 2020 Lady Gaga listenr32 False No

2 Good Vibe Funk 2019 Funk Overlord listenr32 False No

3 Beat It Rock 1989 Michael Jackson fancypants False No

4 In Bloom Rock 1991 Nirvana fancypants True Yes

5 Shallow Pop 2020 Lady Gaga listenr32 True Yes

Set to False during 
inference



Positional features: 2 models 

1. Predicts the probability that the user will see and consider a 
recommendation given its position.

2. Predicts the probability that the user will click on the item given that 
they saw and considered it.
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Model 2 doesn’t 
use positional 

features



How might degenerate feedback loops occur? (10 mins)

1. Build a system to predict stock prices and use the predictions to make 
buy/sell decisions.

2. Use text scraped from the Internet to train a language model, then use the 
same language model to generate posts.

Discuss how you might mitigate the consequences of these feedback loops.
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