
Machine Learning Systems Design
Deployment and Monitoring
Lecture 21: Model Monitoring

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

Agenda
1. Natural Labels & Feedback Loops
2. Causes of ML System Failures
3. Data Distribution Shifts
4. Monitoring and Observability

2

3. Data Distribution Shifts

3

● Source distribution: data the model is trained on
● Target distribution: data the model runs inference on

4

Data distribution shift

Supervised learning: P(X, Y)

1. P(X, Y) = P(Y|X)P(X)
2. P(X, Y) = P(X|Y)P(Y)

5

Types of data distribution shifts

6

Type Meaning Decomposition

Covariate shift ● P(X) changes
● P(Y|X) remains the same

P(X, Y) = P(Y|X)P(X)

Label shift ● P(Y) changes
● P(X|Y) remains the same

P(X, Y) = P(X|Y)P(Y)

Concept drift ● P(X) remains the same
● P(Y|X) changes

P(X, Y) = P(Y|X)P(X)

Covariate shift

● Statistics: a covariate is an independent variable that can influence the
outcome of a given statistical trial.

● Supervised ML: input features are covariates

7

● P(X) changes
● P(Y|X) remains the same

Covariate shift

● Statistics: a covariate is an independent variable that can influence the
outcome of a given statistical trial.

● Supervised ML: input features are covariates
● Input distribution changes, but for a given input, output is the same

8

● P(X) changes
● P(Y|X) remains the same

Covariate shift: example

● Predicts P(cancer | patient)
● P(age > 40): training > production
● P(cancer | age > 40): training = production

9

● P(X) changes
● P(Y|X) remains the same

Covariate shift: causes (training)

● Data collection
○ E.g. people >40 are encouraged by doctors to get checkups
○ Closely related to sampling biases

● Training techniques
○ E.g. oversampling of rare classes

● Learning process
○ E.g. active learning

10

● Predicts P(cancer | patient)
● P(age > 40):

○ training > production
● P(cancer | age > 40):

○ training = production

● P(X) changes
● P(Y|X) remains the same

Covariate shift: causes (prod)

Changes in environments

● Ex 1: P(convert to paid user | free user)
○ New marketing campaign attracting users from with higher income

■ P(high income) increases
■ P(convert to paid user | high level) remains the same

11

● P(X) changes
● P(Y|X) remains the same

Covariate shift: causes (prod)

Changes in environments

● Ex 2: P(Covid | coughing sound)
○ Training data from clinics, production data from phone recordings

■ P(coughing sound) changes
■ P(Covid | coughing sound) remains the same

12

● P(X) changes
● P(Y|X) remains the same

Covariate shift

● Research: if knowing in advance how the production data will differ from
training data, use importance weighting

● Production: unlikely to know how a distribution will change in advance

13

https://arxiv.org/abs/2006.04662

Label shift

● Output distribution changes but for a given output, input distribution stays
the same.

14

● P(Y) changes
● P(X|Y) remains the same

Label shift & covariate shift

● Predicts P(cancer | patient)
● P(age > 40): training > production
● P(cancer | age > 40): training = production
● P(cancer): training > production
● P(age > 40 | cancer): training = prediction

15

● P(Y) changes
● P(X|Y) remains the same

● P(X) changes
● P(Y|X) remains the same

P(X) change often leads to P(Y) change, so
covariate shift often means label shift

Label shift & covariate shift

16

● Predicts P(cancer | patient)
● New preventive drug: reducing P(cancer | patient) for

all patients
● P(age > 40): training > production
● P(cancer | age > 40): training > production
● P(cancer): training > production
● P(age > 40 | cancer): training = prediction

● P(X) changes
● P(Y|X) remains the same

Not all label shifts are covariate shifts!

● P(Y) changes
● P(X|Y) remains the same

Concept Drift

● Same input, expecting different output
● P(houses in SF) remains the same
● Covid causes people to leave SF, housing prices drop

○ P($5M | houses in SF)
■ Pre-covid: high
■ During-covid: low

17

● P(X) remains the same
● P(Y|X) changes

Concept Drift

● Concept drifts can be cyclic & seasonal
○ Ride sharing demands high during rush hours, low otherwise
○ Flight ticket prices high during holidays, low otherwise

18

● P(X) remains the same
● P(Y|X) changes

General data changes

● Feature change
○ A feature is added/removed/updated

19

General data changes

● Feature change
○ A feature is added/removed/updated

● Label schema change
○ Original: {“POSITIVE”: 0, “NEGATIVE”: 1}
○ New: {“POSITIVE”: 0, “NEGATIVE”: 1, “NEUTRAL”: 2}
○ both P(Y) and P(X|Y) change

20

Detecting data distribution shifts

How to determine that two distributions are different?

21

Detecting data distribution shifts

● The first idea might be to monitor your model’s accuracy-related metrics
● In production, you don’t always have access to labels, and even if you do,

labels will be delayed.
● In research, there have been efforts to understand and detect label shifts

without labels from the target distribution (Black Box Shift Estimation)
● The idea is that if the model is well-calibrated, meaning that its predicted

probabilities match the true probabilities, then we can use its predictions as
proxies for the labels

● However, in the industry, most drift detection methods focus on detecting
changes in the input distribution.

22

Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
○ Compute these stats during training and compare these stats in production

23

Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
○ Not universal: only useful for distributions where these statistics are meaningful

24

Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
○ Not universal: only useful for distributions where these statistics are meaningful
○ Inconclusive: if statistics differ, distributions differ. If statistics are the same, distributions can still

differ.

25

Detecting data distribution shifts

How to determine that two distributions are different?

1. Compare statistics: mean, median, variance, quantiles, skewness, kurtosis, …
2. Two-sample hypothesis test

○ Determine whether the difference between two populations is statistically significant
○ If yes, likely from two distinct distributions

26

E.g.
1. Data from yesterday
2. Data from today

Two-sample test: KS test (Kolmogorov–Smirnov)

● Pros
○ Doesn’t require any parameters of the underlying distribution
○ Doesn’t make assumptions about distribution

● Cons
○ Only works with one-dimensional data

27

● Useful for prediction & label
distributions

● Not so useful for features

Two-sample test

28

alibi-detect (OS)

Most tests work better on
low-dim data, so dim
reduction is recommended
beforehand!

https://github.com/SeldonIO/alibi-detect

Cumulative vs. sliding metrics

● Sliding: reset at each new time window

29
This image is based on an example from MadeWithML (Goku Mohandas).

https://madewithml.com/courses/mlops/monitoring/

Not all shifts are equal

30

● Sudden shifts vs. gradual shifts
○ Sudden shifts are easier to detect than gradual shifts

Not all shifts are equal

31

● Sudden shifts vs. gradual shifts
● Spatial shifts vs. temporal shifts

● New device (e.g.
mobile vs. desktop)

● New users (e.g. new
country)

E.g. same users, same
device, but behaviors
change over time

Temporal shifts: time window scale matters

32Target distribution

Source distribution:
likely a shift

Source distribution:
unlikely a shift

Temporal shifts: time window scale matters

33

Difficulty is compounded
by seasonal variation

how to deal with the seasonality of a market

https://eng.lyft.com/how-to-deal-with-the-seasonality-of-a-market-584cc94d6b75

Temporal shifts: time window scale matters

● Too short window: false alarms of shifts
● Too long window: takes long to detect shifts

34

● Granularity level: hourly, daily

Temporal shifts: time window scale matters

● Too short window: false alarms of shifts
● Too long window: takes long to detect shifts

35

● Granularity level: hourly, daily
● Merge shorter time scale windows -> larger time scale window
● RCA: automatically analyze various window sizes

Addressing data distribution shifts

1. Train model using a massive dataset

36

Addressing data distribution shifts

1. Train model using a massive dataset
2. Retrain model with new data from new distribution

○ Mode
■ Train from scratch
■ Fine-tune

37

Addressing data distribution shifts

1. Train model using a massive dataset
2. Retrain model with new data from new distribution

○ Mode
○ Data

■ Use data from when data started to shift
■ Use data from the last X days/weeks/months
■ Use data form the last fine-tuning point

38

Need to figure out not just when to retrain
models, but also how and what data

4. Monitoring and Observability

39

Monitoring vs. observability

● Monitoring: tracking, measuring, and logging different metrics that can help
us determine when something goes wrong

● Observability: setting up our system in a way that gives us visibility into our
system to investigate what went wrong

40

Monitoring vs. observability

● Monitoring: tracking, measuring, and logging different metrics that can help
us determine when something goes wrong

● Observability: setting up our system in a way that gives us visibility into our
system to investigate what went wrong

41

Instrumentation
● adding timers to your functions
● counting NaNs in your features
● logging unusual events e.g. very long inputs
● …

Monitoring vs. observability

● Monitoring: tracking, measuring, and logging different metrics that can help
us determine when something goes wrong

● Observability: setting up our system in a way that gives us visibility into our
system to investigate what went wrong

42

Observability is part of monitoring

Monitoring is all about metrics

● Operational metrics
● ML-specific metrics

43

Operational metrics

● Latency
● Throughput
● Requests / minute/hour/day
● % requests that return with a 2XX code
● CPU/GPU utilization
● Memory utilization
● Availability
● etc.

44

Operational metrics

● Latency
● Throughput
● Requests / minute/hour/day
● % requests that return with a 2XX code
● CPU/GPU utilization
● Memory utilization
● Availability
● etc.

45

SLA example
● Up means:

○ median latency <200ms
○ 99th percentile <2s

● 99.99% uptime (four-nines)

SLA for ML?

ML metrics: what to monitor

46

Monitoring #1: accuracy-related metrics

● Most direct way to monitor a model’s performance
○ Can only do as fast as when feedback is available

47

Monitoring #1: accuracy-related metrics

● Most direct way to monitor a model’s performance
● Collect as much feedback as possible
● Example: YouTube video recommendations

○ Click through rate
○ Duration watched
○ Completion rate
○ Take rate

48

Monitoring #2: predictions

● Predictions are low-dim: easy to visualize, compute stats, and do
two-sample tests

● Changes in prediction dist. generally mean changes in input dist.

49

Monitoring #2: predictions

● Predictions are low-dim: easy to visualize, compute stats, and do
two-sample tests

● Changes in prediction dist. generally mean changes in input dist.
● Monitor odd things in predictions

○ E.g. if predictions are all False in the last 10 mins

50

Monitoring #3: features

● Most monitoring tools focus on monitoring features
● Feature schema expectations

○ Generated from the source distribution
○ If violated in production, possibly something is wrong

● Example expectations
○ Common sense: e.g. “the” is most common word in English
○ min, max, or median values of a feature are in [a, b]
○ All values of a feature satisfy a regex
○ Categorical data belongs to a predefined set
○ FEATURE_1 > FEATURE_B

51

Generate expectations with profiling & visualization
● Examining data & collecting:

○ statistics
○ informative summaries

● pandas-profiling
● facets

52

https://github.com/pandas-profiling/pandas-profiling
https://pair-code.github.io/facets/

Monitoring #3: features

● Feature schema expectations

53
GitHub - great-expectations/great_expectations

https://github.com/great-expectations/great_expectations

Monitoring #3: features schema with pydantic

54
https://pydantic-docs.helpmanual.io/usage/validators/

Monitoring #3: features schema with TFX

55
How To Evaluate MLOps Tools (Hamel Husain, CS 329S Lecture 9, 2022)

https://youtu.be/GHk5HMW4XMA

Feature monitoring problems

1. Compute & memory cost
a. 100s models, each with 100s features
b. Computing stats for 10000s of features is costly

56

Feature monitoring problems

1. Compute & memory cost
2. Alert fatigue

a. Most expectation violations are benign

57

Feature monitoring problems

1. Compute & memory cost
2. Alert fatigue
3. Schema management

a. Feature schema changes over time
b. Need to find a way to map feature to schema version

58

Monitoring #4: raw inputs

● The way many ML workflows are set up today also makes it impossible for
ML engineers to get direct access to raw input data, as the raw input data is
often managed by a data platform team

● Monitoring raw inputs is often a responsibility of the data platform team, not
the data science or ML team.

59

Monitoring toolbox

Measuring, tracking, and interpreting metrics for complex systems is a nontrivial
task, and engineers rely on a set of tools to help them do so.

● Logs
● Dashboards
● Alerts

60

Monitoring toolbox: logs

● Log everything
● A stream processing problem
● Many companies process logs in batch processes

61

“If it moves, we track it. Sometimes we’ll draw a graph of something
that isn’t moving yet, just in case it decides to make a run for it.”

Ian Malpass (Etsy 2011)

Vladimir Kazanov (Badoo 2019)

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://skillsmatter.com/skillscasts/13983-data-engineering-in-badoo-handling-20-billion-events-per-day#video

Monitoring toolbox: logs (tracing)

62

● In the early days of software deployment, an application might be one single
service.

● But today, A request may do 20–30 hops from when it’s sent until when a
response is received. The hard part might not be in detecting when
something happened, but where the problem was

● Distributed tracing: in microservice architecture, give each process a unique
ID so that, when something goes wrong, the error message contain that ID.

Monitoring toolbox: logs (big data)

63

● Because logs have grown so large and so difficult to manage, there have
been many tools developed to help companies manage and analyze logs.

● Analyzing billions of logged events manually is futile, so many companies
use ML to analyze logs
○ anomaly detection
○ when a service fails find the probability of related services being affected

Monitoring toolbox: dashboards

● Make monitoring accessible to non-engineering stakeholders
● Good for visualizations but insufficient for discovering distribution shifts

64
Graphs are useful for making sense of numbers, but they aren’t sufficient

Monitoring toolbox: dashboards

● Excessive metrics on a dashboard can also be counterproductive, a
phenomenon known as dashboard rot.

● It’s important to pick the right metrics or abstract out lower-level metrics to
compute higher-level signals that make better sense for your specific tasks.

65

Monitoring toolbox: alerts

● 3 components of a good alerting system
○ Alert policy: condition for alert

66

be notified when a model’s accuracy is
under 90%, or that the HTTP
response latency is higher than a
second for at least 10 minutes.

Monitoring toolbox: alerts

● 3 components of a good alerting system
○ Alert policy: condition for alert
○ Notification channels

67

you might configure your alerts to be
sent to an email address such as
mlops-monitoring@[your company
email domain], or to post to a Slack
channel such as #mlops-monitoring
or to PagerDuty.

Monitoring toolbox: alerts

● 3 components of a good alerting system
○ Alert policy: condition for alert
○ Notification channels
○ Description

68

Recommender model accuracy below 90%

 ${timestamp}: This alert originated from
the service ${service-name}

Monitoring toolbox: alerts

● 3 components of a good alerting system
○ Alert policy: condition for alert
○ Notification channels
○ Description

● Alert fatigue
○ How to send only meaningful alerts?

69

Observability

Better visibility into understanding the complex behavior of software using
[outputs] collected from the system at run time.

● Simple old softwares: monitoring
● Complicated today softwares: observability

70

Observability: how to see inside your ML system

- Imagine you have a black box that does something amazing, like predicting the weather or
playing chess. But sometimes it fails or makes mistakes, and you don't know why. How do
you fix it?
- You could try to open the box and look inside, but that might break it or take too long. You
could also try to change the box's code, but that might make things worse or introduce new
bugs.
- A better way is to use observability: a way to see inside the box by looking at what comes
out of it. Observability lets you collect and analyze the box's outputs, like its predictions,
errors, logs, and metrics.
- Observability is better than monitoring, which only looks at some outputs and may not
tell you enough about the problem. Observability lets you ask detailed questions about the
box's outputs, such as who, what, when, where, and why.

71

Observability and interpretability in ML

- But observability is not enough. You also need to understand how the box works and why
it does what it does. This is called interpretability: a way to explain the box's logic and
reasoning.
- Interpretability helps you find out which inputs or features are important for the box and
how they affect its outputs. For example, if the box predicts the weather, you might want to
know which factors influence its forecasts, like temperature, humidity, wind speed, etc.
- Interpretability helps you fix problems with the box when its performance drops or when
it makes mistakes. For example, if the box plays chess, you might want to know why it lost
a game or made a bad move.
- Observability and interpretability are part of continual learning: a way to update the box
to adapt to changes in data or environment. For example, if the box predicts the weather,
you might want to update it when the seasons change or when there is a storm.

72

Monitoring -> Continual Learning

● Monitoring is passive
○ Wait for a shift to happen to detect it

● Continual learning is active
○ Update your models to address shifts

73

Machine Learning Systems Design
Deployment and Monitoring
Next Lecture: Model Online Evaluation

CE 40959 Spring 2023
Ali Zarezade
SharifMLSD.github.io

